References

  1. A. Sarswat, D. Mohan, Sustainable development of coconut shell activated carbon (CSAC) & magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal, RSC Adv., 6 (2016) 85390–85410.
  2. H. Ou, Q. You, J. Li, G. Liao, H. Xia, D. Wang, A rich-amine porous organic polymer: an efficient and recyclable adsorbent for removal of azo dye and chlorophenols, RSC Adv., 6 (2016) 98487–98497.
  3. X. Wu, Q. Zhang, C. Liu, X. Zhang, D.D.L. Chung, Carboncoated sepiolite clay fibers with acid pre-treatment as low-cost organic adsorbents, Carbon, 123 (2017) 259–272.
  4. L. Xu, Z. Wang, S. Ye, X. Sui, Removal of p-chlorophenol from aqueous solutions by carbon nanotube hybrid polymer adsorbents, Chem. Eng. Res. Des., 123 (2017) 76–83.
  5. H. Liu, R. Xia, D. Zhao, X. Fan, T. Feng, Enhanced adsorption of 2, 4–dichlorophenol by nanoscale zero-valent iron loaded on bentonite and modified with a cationic surfactant, Ind. Eng. Chem. Res., 56 (2016) 1–10.
  6. H. Yuan, Q.L. You, L.J. Song, Y.G. Liao, H. Xia, D.S. Wang, Preparation of carbon nanotubes/porous polyimide composites for effective adsorption of 2, 4- dichlorophenol, RSC Adv., 6 (2016) 95825–95835.
  7. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol, Chem. Eng. J., 169 (2011) 180–185.
  8. T.A. Saleh, S.O. Adio, M. Asif, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J. Cleaner Prod., 182 (2018) 960–968.
  9. P.T. Huong, B.K. Lee, J. Kim, Improved removal of 2-chlorophenol by a synthesized Cu-nano zeolite, Process Saf. Environ., 100 (2016) 272–280.
  10. W.P. Cheng, W. Gao, X.Y. Cui, J.H. Ma, R.F. Li, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, J. Taiwan Inst. Chem. Eng., 62 (2016) 192–198.
  11. W. Libbrecht, A. Verberckmoes, J.W. Thybaut, D.V.P. Van, C.J. De, Tunable large pore mesoporous carbons for the enhanced adsorption of humic acid, Langmuir, 33 (2017) 6769–6777.
  12. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  13. N. Katchala, J. Adduru, V. Upadhyayula, T.N. Rao, A. Srinivasan, Facile synthesis of mesoporous carbon from furfuryl alcoholbutanol system by EISA process for supercapacitors with enhanced rate capability, J. Alloys Compd., 723 (2017) 488–497.
  14. Y. Liu, X. Yang, H. Liu, Y. Ye, Z. Wei, Nitrogen-doped mesoporous carbon supported Pt nanoparticles as a highly efficient catalyst for decarboxylation of saturated and unsaturated fatty acids to alkanes, Appl. Catal., B, 218 (2017) 679–689.
  15. T.Y. Ma, L. Liu, Z.Y. Yuan, Direct synthesis of ordered mesoporous carbons, Chem. Soc. Rev., 42 (2013) 3977–4003.
  16. W. Xin, Y. Song, Mesoporous carbons: recent advances in synthesis and typical applications, RSC Adv., 5 (2015) 83239–83285.
  17. H. Najafinezhad, Fabrication of magnetic mesoporous carbon and its application for adsorptive removal of 2, 4, 6-trichlorophenol (TCP) from aqueous solution, Crystengcomm, 16 (2014) 5598–5607.
  18. J. Gao, X. Wang, Q. Zhao, Y. Zhang, J. Liu, Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons, Electrochim. Acta, 163 (2015) 223–231.
  19. J. Fan, X. Ran, Y. Ren, C. Wang, J. Yang, W. Teng, Ordered mesoporous carbonaceous materials with tunable surface property for enrichment of hexachlorobenzene, Langmuir, 32 (2016) 9922–9929.
  20. S. Xue, C. Wang, Y. Wei, Preparation of magnetic mesoporous carbon from polystyrene-grafted magnetic nanoparticles for rapid extraction of chlorophenols from water samples, RSC Adv., 7 (2017) 11921–11928.
  21. M. Kragulj, J. Trickovic, A. Kukovecz, B. Jović, J. Molnar, S. Rončević, Adsorption of chlorinated phenols on multiwalled carbon nanotubes, RSC Adv., 5 (2015) 24920–24929.
  22. Z. Luo, M. Gao, S. Yang, Q. Yang, Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: mechanism, kinetics and thermodynamics studies, Colloids Surf., A, 482 (2015) 222–230.
  23. J. Cao, C.J. Jafta, G. Jiang, Q. Ran, X. Lin, R. Félix, Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors, ACS Appl. Mater. Interfaces, 8 (2016) 29628–29636.
  24. G. Wang, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants, Carbon, 115 (2017) 730–739.
  25. N. Moreno, A. Caballero, L. Hernán, J. Morales, J. Canales-Vázquez, Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium-sulfur cells, Phys. Chem. Chem. Phys., 16 (2014) 17332–17340.
  26. X. Yang, J. Yu, W. Zhang, G. Zhang, Mesopore-dominant wormhole-like carbon with high supercapacitive performance in organic electrolyte, RSC Adv., 7 (2017) 15096–15101.
  27. Y. Zhu, P. Kolar, Investigation of adsorption of p-cresol on coconut shell-derived activated carbon, J. Taiwan Inst. Chem. Eng., 68 (2016) 138–146.
  28. L. Jiang, L. Lu, S. Xiao, J. Chen, Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution, Chem. Eng. J., 284 (2016) 609–619.
  29. R. Liang, J. Zhang, Y. Li, C. Zhang, Preparation and evaluation of cattail fiber-based activated carbon for 2, 4-dichlorophenol and 2, 4, 6-trichlorophenol removal, Chem. Eng. J., 168 (2011) 553–561.
  30. A. Chen, Y. Li, Y. Yu, Y. Li, L. Zhang, H. Lv, Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO2 capture, RSC Adv., 5 (2015) 107299–107306.
  31. Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.
  32. H. Ding, X. Shen, C. Chen, X. Zhang, Molecular dynamics simulations of simple aromatic compounds adsorption on single-walled carbon nanotubes, RSC Adv., 6 (2016) 80972–80980.
  33. M. Sharma, R.K. Vyas, K. Singh, Theoretical and experimental analysis of reactive adsorption in a packed bed: parallel and branched pore-diffusion model approach, Ind. Eng. Chem. Res., 55 (2016) 5945–5954.
  34. S. Varghese, V.P. Vinod, T.S. Anirudhan, Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment, Indian J. Chem. Technol., 11 (2004) 825–833.
  35. K.L. Lin, J.Y. Pan, Y.W. Chen, R.M. Cheng, X.C. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater., 161 (2009) 231–240.
  36. A. Breindl, B. Beck, T. Clark, R.C. Glen, Prediction of thenoctanol/ water partition coefficient, logP, using a combination of semiempirical MO-calculations and a neural network, Mol. Model. Annu., 3 (1997) 142–155.
  37. J. Yang, G. Krishnamoorthy, A. Saxena, G. Zhang, J. Shi, H. Yang, Adsorption of phenols by magnetic polysulfone microcapsules containing tributyl phosphate, Chem. Eng. J., 157 (2010) 466–474.
  38. K. Anzo, M. Harada, T. Okada, Enhanced kinetics of pseudo first-order hydrolysis in liquid phase coexistent with ice, J. Phys. Chem. A, 117 (2013) 10619–10625.
  39. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  40. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 1 (1963) 1–2.
  41. Y. Dai, J. Yao, Y. Song, S. Wang, Y. Yuan, Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes, Environ. Sci. Nano., 3 (2016) 857–868.
  42. P. Bo, B. Xing, Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. I. Several concerns regarding pseudo-first order and pseudo-second order models, J. Soils Sediments, 10 (2010) 838–844.
  43. Z.N. Garba, A.A. Rahim, Evaluation of optimal activated carbon from an agricultural waste for the removal of para-chlorophenol and 2,4-dichlorophenol, Process Saf. Environ. Prot., 102 (2016) 54–63.
  44. J. Pan, X. Zou, X. Wang, G. Wei, Y. Yan, J. Han, Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with β-cyclodextrin/attapulgite composites as support, Chem. Eng. J., 162 (2010) 910–918.
  45. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Franklin Inst., 184 (1916) 102–105.
  46. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  47. M.M. Dubinin, L.V. Radushkevich, Equation of the Characteristic Curve of Activated Charcoal, Proceedings of the Union of Soviet Socialist Republics Academy of Sciences, 55 (1947) 331–337.
  48. C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2. Theoretical models, J. Chem. Soc., Faraday Trans., 73 (1977) 456–464.
  49. E. Conde, A. Moure, H. Domínguez, Recovery of phenols from autohydrolysis liquors of barley husks: kinetic and equilibrium studies, Ind. Crop. Prod., 103 (2017) 175–184.
  50. H. Tahermansouri, Z. Dehghan, F. Kiani, Phenol adsorption from aqueous solutions by functionalized multiwalled carbon nanotubes with pyrazoline derivative in the presence of ultrasound, RSC Adv., 5 (2015) 44263–44273.
  51. J. Zhou, B. Yang, Z. Li, L. Lei, X. Zhang, Selective adsorption of naphthalene in aqueous solution on mesoporous carbon functionalized by task-specific ionic liquid, Ind. Eng. Chem. Res., 54 (2015) 2329–2338.
  52. V.S. Munagapati, V. Yarramuthi, D.S. Kim, Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads, J. Mol. Liq., 240 (2017) 329–339.
  53. M. Saad, H. Tahir, D. Ali, Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using response surface methodology, Ultrason. Sonochem., 38 (2017) 197–213.
  54. Q. Qin, K. Liu, D. Fu, H. Gao, Effect of chlorine content of chlorophenols on their adsorption by mesoporous SBA-15, J. Environ. Sci., 24 (2012) 1411–1417.
  55. R.I. Yousef, B. El-Eswed, A.A.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  56. M. Kilic, E. Apaydinvarol, A.E. Pütün, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
  57. L. Jiang, S. Li, H. Yu, Z. Zou, X. Hou, F. Shen, Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions, Appl. Surf. Sci., 369 (2016) 398–413.
  58. Y. Liu, J. Chen, M. Chen, B. Zhang, D. Wu, Q. Cheng, Adsorption characteristics and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl phenol resin in wastewater, RSC Adv., 5 (2015) 76160–76169.
  59. P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq., 223 (2016) 1067–1080.