References

  1. R. Xu, M.Y. Zhang, R.J.G. Mortimer, G. Pan, Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implications for eutrophication control, Environ. Sci. Technol., 51 (2017) 3418–3425.
  2. Y.M. Liu, W. Chen, D.H. Li, Z.B. Huang, Y.W. Shen, Y.D. Liu, Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China, J. Environ. Sci., 23 (2011) 575–581.
  3. X.D. Duan, T. Sanan, D.L.C. Aa, X.X. He, M.H. Kong, D.D. Dionysiou, Susceptibility of the algal toxin microcystin-LR to UV/chlorine process: comparison with chlorination, Environ. Sci. Technol., 52 (2018) 8252–8262..
  4. J. Zhang, Q. Lu, Q. Ding, L. Yin, Y. Pu, A novel and native microcystin-degrading bacterium of Sphingopyxi ssp. isolated from Lake Taihu, Int. J. Environ. Res. Public Health, 14 (2017) 1187.
  5. T. Fotiou, T.M. Triantis, T. Kaloudis, L.M. Pastrana-Martínez, V. Likodimos, P. Falaras, A.M.T. Silva, A. Hiskia, Photocatalytic degradation of microcystin-LR and off-odor compounds in water under UV-A and solar light with a nanostructured photocatalyst based on reduced graphene oxide–TiO2 composite. Identification of intermediate products, Ind. Eng. Chem. Res., 52 (2013) 13991–14000.
  6. Q.Y. Sun, T.F. Zhang, F.F. Wang, C.Q. Liu, C.S. Wu, R.R. Xie, Y.Y. Zheng, Ultraviolet photosensitized transformation mechanism of microcystin-LR by natural organic matter in raw water, Chemosphere, 209 (2018) 96–103.
  7. J. Chang, Z.L Chen, Z. Wang, J.M. Shen, Q. Chen, J. Kang, L. Yang, X.W. Liu, C.X. Nie, Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways, Water Res., 63 (2014) 52–61.
  8. D.P. Ojha, J.H. Song, H.J. Kim, Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds, J. Environ. Sci., 79 (2019) 35–42.
  9. A.C. Martins, A.L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang, E.J. Pilau, T. Asefa, V.C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceram. Int., 43 (2017) 4411–4418.
  10. Y.L. Su, Y.R. Deng, Y.X. Du, Alternative pathways for photocatalytic degradation of microcystin-LR revealed by TiO2 nanotubes, J. Mol. Catal. A: Chem., 373 (2013) 18–24.
  11. W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study, J. Mol. Catal. A: Chem., 368–369 (2013) 9–15.
  12. X. Yuan C. Zhou, Y. Jin, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye, J. Colloid Interface Sci., 468 (2016) 211–219.
  13. Z. Tong, Y. Dong, T. Xiao, T. Yao, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation, Chem. Eng. J., 260 (2015) 117–125.
  14. J. Wang, F.Y. Su, W.D. Zhang, Preparation and enhanced visible light photoelectrochemical activity of g-C3N4/ZnO nanotube arrays, J. Solid State Electrochem., 18 (2014) 2921–2929.
  15. V.G. Deonikar, K.K. Reddy, W.J. Chung, H. Kim, Facile synthesis of Ag3PO4/g-C3N4 composites in various solvent systems with tuned morphologies and their efficient photocatalytic activity for multi-dye degradation, J. Photochem. Photobiol., A, 368 (2019) 168–181.
  16. Y. Hong, Y.Z. Hong, C.S. Li, B.X. Yin, D. Li, Z.Y. Zhang, B.D. Mao, W.Q. Fan, W. Gu, W.D. Shi, Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite, Chem. Eng. J., 338 (2018) 137–146.
  17. Y.Z. Hong, E.L. Liu, J.Y. Shi, X. Lin, L.Z. Sheng, M. Zhang, L.Y. Wang, J.H. Chen, A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution, Int. J. Hydrogen Energy, 44 (2019) 7194–7204.
  18. L. Luo, W. Tang, C.J. Barrow, W. Yang, H. Wang, F. Jiang, Photocatalytic degradation of bisphenol A by HMS/g-C3N4 composite. Desal. Wat. Treat., 57 (2016) 1–8.
  19. J. Shen, H. Yang, Q. Shen, Y. Feng, Q. Cai, Template-free preparation and properties of mesoporous g-C3N4/TiO2 nanocomposite photocatalyst, Crystengcomm, 16 (2014) 1868–1872.
  20. F. Tian, R. Zhu, F. Ouyang, Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3, J. Environ. Sci., 25 (2013) 2299–2305.
  21. X.M. Dang, X.F. Zhang, Y.T. Chen, X.L. Dong, G.W. Wang, C. Ma, X.X. Zhang. H.C. Ma, M. Xue, Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination, J. Nanopart. Res., 17 (2015) 1–8.
  22. H.J. Yan, H.X. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd., 509 (2011) L26–L29.
  23. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, J. Colloid Interface Sci., 417 (2014) 402–409.
  24. W.K. Jo, N.C.S. Selvam, Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation, Chem. Eng. J., 317 (2017) 913–924.
  25. D. Ma, J. Wu, M.C. Gao, Y.J. Xin, T.J. Ma, Y.Y. Sun, Fabrication of Z-scheme g-C3N4 /RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity, Chem. Eng. J., 290 (2016) 136–146.
  26. W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal., B, 180 (2016) 530–543.
  27. H. Xu, H.Z. Zhao, Y.H. Song, W. Yan, Y.G. Xu, H.P. Li, L.Y. Huang, S. Yin, Y.P. Li, Q. Zhang, H.M. Li, g-C3N4/Ag3PO4 composites with synergistic effect for increased photocatalytic activity under the visible light irradiation, Mater. Sci. Semicond. Process., 39 (2015) 726–734.
  28. X.Q. Geng, S. Chen, X. Lv, W. Jiang, T.H. Wang, Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light, Appl. Surf. Sci., 462 (2018) 18–28.
  29. C.J. Song, M.S. Fan, W.D. Shi, W. Wang, High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalysts, Environ. Sci. Pollut. Res., 378 (2018) 1–13.
  30. X. Lin, D. Xu, Y. Xi, R. Zhao, L.N. Zhao, M.S. Song, H.J. Zhai, G.B. Che, L.M. Chang, Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation, Colloids Surf., A, 513 (2017) 117–124.
  31. Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo. Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 9 (2010) 559–564.
  32. P.F. Zhu, Y.J. Chen, M. Duan, Z.H. Ren, M. Hu, Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst, Catal. Sci. Technol., 8 (2018) 3818–3832.
  33. Y.K. Jo, I.Y. Kim, J.M. Lee, S. Nahm, J.W. Choi, S.J. Hwang, Surface-anchored CdS@Ag3PO4 nanocomposite with efficient visible light photocatalytic activity, Mater. Lett., 114 (2014) 152–155.
  34. Y.M. He, L.H. Zhang, B.T. Teng, M.H. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel, Environ. Sci. Technol., 49 (2015) 649–656.
  35. Z.K. Cui, M.M. Si, Z. Zhi, L.W. Mi, W.J. Fa, H.M. Jia, Preparation and characterization of Ag3PO4/BiOI composites with enhanced visible light driven photocatalytic performance, Catal. Commun., 42 (2013) 121–124.
  36. M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts, J. Ind. Eng. Chem., 62 (2018) 1–25.
  37. R. Guo, J. Wu, A. Xu, X. Huang, H. Zhua, R. Jiang, Y. Lin, F. Guo, ZnWO4/Ag3PO4 composites with an enhanced photocatalytic activity and stability under visible light, RSC Adv., 6 (2016) 114818–114824.
  38. Y.J. Chen, P.F. Zhu, M. Duan, J. Li, Z.H. Ren, P.P. Wang, Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination, Appl. Surf. Sci., 486 (2019) 198–211.
  39. L. Chen, K.Y.H. Gin, Y.L. He, Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa, Environ. Sci. Pollut. Res., 23 (2016) 3586–3595.
  40. Q. Guo, H. Li, Q. Zhang, Y.L. Zhang, Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/polyimide composite photocatalyst for microcystin-LR degradation, Appl. Catal., B, 229 (2018) 192–203.
  41. Y.P. Sun, K. He, Q.D. Yin, S. Echigo, G.X. Wu, Y.T. Guan, Determination of quorum-sensing signal substances in water and solid phases of activated sludge systems using liquid chromatography–mass spectrometry, J. Environ. Sci., 69 (2018) 85–94.
  42. S. L. Wang, L.L. Wang, W.H. Ma, D.M. Johnson, Y.F. Fang, M.K. Jia, Y.P. Huang, Moderate valence band of bismuth oxyhalides (BiOXs, X = Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR, Chem. Eng. J., 259 (2015) 410–416.
  43. X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study, J. Phys. Chem., C, 116 (44) (2012) 23485–23493.
  44. Y.M. He, J. Cai, T.T. Li, Y. Wu, Y.M. Yi, M.F. Luo, L.H. Zhao, Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation, Ind. Eng. Chem. Res., 51 (2012) 14729–14737.
  45. H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light, Ind. Eng. Chem. Res., 53 (2014) 8018–8025.
  46. H. Ji, F. Chang, X. Hu, Q. Wei, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chem. Eng. J., 218 (2013) 183–190.
  47. S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2019) 10397–10401.
  48. J. Mei, D.P. Zhang, N. Li, M.X. Zhang, X.Y. Gu, S.C. Miao, S.H. Cui, J. Yang, The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation, J. Alloys Compd., 749 (2018) 715–723.
  49. M. R. Elahifard, S. Ahmadvand, A. Mirzanejad, Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: simulation and experiment, Mater. Sci. Semicond. Process., 84 (2018) 10–16.
  50. S.F. Kang, Y. Fang, Y.K. Huang, L.F. Cui, Y.Z. Wang, H.F. Qin, Y.M. Zhang, X. Li, Y.G. Wang, Critical influence of g-C3N4 selfassembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light, Appl. Catal., B, 168–169 (2015) 472–482.
  51. Y.P. Bi, S.X. Ouyang, J.Y. Cao, J.H. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities, Phys. Chem. Chem. Phys., 13 (2011) 10071–10075.
  52. H.Y. Huang, Y.Y. Feng, J.H. Zhou, G. Li, K.W. Dai, Visible light photocatalytic reduction of Cr(VI) on Ag3PO4 nanoparticles, Desal. Wat. Treat., 51 (2013) 7236–7240.
  53. J. Mei, D.P. Zhang, N. Li, M.X. Zhang, X.Y. Gu, S.C. Miao, S.H. Cui, J. Yang, The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalyticdegradation of bisphenol A under visible light irradiation, J. Alloys Compd., 749 (2018) 715–723.
  54. H.T. Li, N. Li, M. Wang, B.P. Zhao, F. Long, Synthesis of novel and stable g-C3N4-Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation, R. Soc. Open Sci., 5 (2018) 171419.
  55. L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation, Appl. Catal., B, 183 (2016) 133–141.
  56. F.T. Li, Y. Zhao, Y. J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao, D.M. Chen, N-doped P25 TiO2-amorphous Al2O3 composites: onestep solution combustion preparation and enhanced visiblelight photocatalytic activity, J. Hazard. Mater., 239–240 (2012) 118–127.
  57. F. Zhang, H. Peng, S.Q. Jiang, C.Q. Wang, X. Xu, L.P. Wang, Construction of precious metal-loaded BiOI semiconductor materials with improved photocatalytic activity for microcystin-LR degradation, Environ. Sci. Pollut. Res., 26 (2019) 8226–8236.
  58. P.F. Zhu, Y.J. Chen, M. Duan, M. Liu, P. Zou, Structure and properties of Ag3PO4/diatomite photocatalysts for the degradation of organic dyes under visible light irradiation, Powder Technol., 336 (2018) 230–239.
  59. Y.P. Liu, L. Fang, H.D. Lu, Y.W. Li, C.Z. Hu, H.G. Yu, One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4, Appl. Catal., B, 115–116 (2012) 245–252.
  60. Y. Huang, P.G. Wang, Z.Y. Wang, Y.F. Rao, J.J. Cao, S.Y. Pu, W.K. Ho, S.C. Lee, Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal, Appl. Catal., B, 240 (2019) 122–131.
  61. M. Sun, Q. Zeng, X. Zhao, Y. Shao, P.G. Ji, C.Q. Wang, T. Yan, B. Du, Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: Enhanced charge separation and excellent visible-light driven photocatalytic activity, J. Hazard. Mater., 339 (2017) 9–21.