References
- S. Bruaset, H. Rygg, S. Sægrov, Reviewing the long-term sustainability
of urban water system rehabilitation strategies
with an alternative approach, Sustainability, 10 (2018) 1–30.
- R.C. Marques, N.F. da Cruz, J. Pires, Measuring the sustainability
of urban water services, Environ. Sci. Policy, 54 (2015)
142–151.
- K. Van Leeuwen, J. Frijns, A. Van Wezel, Indicators for the
Sustainability of the Urban Water Cycle, Watercycle Research
Institute (KWR), The Netherlands, 2011.
- A.N. Baklavaridis, P.E. Samaras, V. Karayannis, Recent progress
in the advanced oxidation of wastewaters using recycled fly
ashes as alternative catalytic agents, Desal. Wat. Treat., 133 (2018)
292–306.
- L. Shi, Research on dynamic model of optimal simulation system
for urban water resources sustainable utilization based on complex
scientific management, Desal. Wat. Treat., 125 (2018) 156–163.
- K. Balakrishnan, N.A. Zakaria, K.Y. Foo, Evolution of sustainable
product service system in the water management practice,
Desal. Wat. Treat., 90 (2017) 147–156
- R.R. Brown, N. Keath, T.H. Wong, Urban water management in
cities: historical, current and future regimes, Water Sci. Technol.,
59 (2009) 47–855.
- G. Thornton, M. Franz, D. Edwards, G. Pahlen, P. Nathanail,
The challenge of sustainability: incentives for brownfield
regeneration in Europe, Environ. Sci. Policy, 10 (2007) 116–134.
- R.M. Bijlsma, P.W.G. Bots, H.A. Wolters, A.Y. Hoekstra, An
empirical analysis of stakeholders’ influence on policy development:
the role of uncertainty handling, Ecol. Soc., 16 (2011),
Available at: http://www.ecologyandsociety.org/vol16/iss1/art51/.
- F. Su, H.-y. Shang, Social water cycle and sustainable consumption
in the perspective of water footprint – taken the low water
consumption patterns of Zhangye city as a case, Desal. Wat.
Treat., 122 (2018) 170–175.
- F.W. Geels, The multi-level perspective on sustainability
transitions: responses to seven criticisms, Environ. Innovation
Societal Transitions, 1 (2011) 24–40.
- N. Rahmanian, S.H.B. Ali, M. Homayoonfard, N.J. Ali,
M. Rehan, Y. Sadef, A.S. Nizami, Analysis of physiochemical
parameters to evaluate the drinking water quality in the state
of perak, Malaysia, J. Chem. N.Y., 2015 (2015), http://dx.doi.
org/10.1155/2015/716125.
- B. Zheng, J. Zhao, D. You, Study on the coupling relationship
between water environment and social economy in Ganjiang
River basin, Desal. Wat. Treat., 122 (2018) 14–19.
- X.-y. Zhang, Q.-t. Zuo, Q.-x. Yang, Calculation of the water
resources dynamic carrying capacity of Tarim River basin
under climate change, Desal. Wat. Treat., 119 (2018) 243–252.
- M. Gul, M.G. Akpinar, R.F. Ceylan, Water use efficiency of
urban households in the Mediterranean region of Turkey, Desal.
Wat. Treat., 76 (2017) 364–368.
- F. Berkes, J. Colding, C. Folke, Eds., Navigating Social–Ecological
Systems: Building Resilience for Complexity and Change,
Cambridge University Press, Cambridge, 2003.
- C. Folke, S. Carpenter, T. Elmqvist, L. Gunderson, C.S. Holling,
B. Walker, Resilience and sustainable development: building
adaptive capacity in a world of transformations, Ambio,
31 (2002) 437–440.
- M.R. Alizadeh, M.R. Nikoo, G.R. Rakhshandehroo, Developing
a multi-objective conflict-resolution model for optimal groundwater
management based on fallback bargaining models
and social choice rules: a case study, Water Resour. Manage.,
31 (2017) 1457–1472.
- A.R. Keshtkar, B. Asefjah, A. Afzali, Application of multicriteria
decision-making approach in catchment modeling and
management, Desal. Wat. Treat., 116 (2018) 83–95.
- A.R. Keshtkar, B. Asefjah, Y. Erfanifard, A. Afzali, Application
of MCDM for biologically based management scenario analysis
in integrated catchment assessment and management, Desal.
Wat. Treat., 65 (2017) 243–251.
- B. Kingdom, R. Liemberger, P. Marin, The Challenge of Reducing
Non-Revenue Water (NRW) in Developing Countries. How the
Private Sector Can Help: A Look at Performance-Based Service
Contracting, Water Supply and Sanitation Board Discussion
Paper Series, Paper No. 8, The World Bank Group, Washington
D.C., USA, 2006.
- S. Nannapaneni, S. Mahadevan, S. Rachuri, Performance evaluation
of a manufacturing process under uncertainty using
Bayesian networks, J. Cleaner Prod., 113 (2016) 947–959.
- C. Tang, Y. Yi, Z. Yang, J. Sun, Risk forecasting of pollution
accidents based on an integrated Bayesian Network and water
quality model for the South to North Water Transfer Project,
J. Ecol. Eng., 96 (2016) 109–116.
- E. Magiera, W. Froelich, Application of Bayesian Networks to
the Forecasting of Daily Water Demand, IDT 2017: Intelligent
Decision Technologies, Springer International Publishing,
New York City, USA, 2015, pp. 385–393.
- D.C. Hall, Q.B. Le, Use of Bayesian networks in predicting
contamination of drinking water with E. coli in rural Vietnam,
Trans. R. Soc. Trop. Med. Hyg., 111 (2017) 270–277.
- W. Wu, G.C. Dandy, H.R. Maier, Protocol for developing ANN
models and its application to the assessment of the quality of
the ANN model development process in drinking water quality
modelling, Environ. Modell. Software, 54 (2014) 108–127.
- I.K. Kalavrouziotis, F. Pedrero, D. Skarlatos, Water and wastewater
quality assessment based on fuzzy modeling for the
irrigation of Mandarin, Desal. Wat. Treat., 57 (2016) 20159–
20168.
- C.M. Raymond, I. Fazey, M.S. Reed, L.C. Stringer, G.M. Robinson,
A.C. Evely, Integrating local and scientific knowledge for
environmental management, J. Environ. Manage., 91 (2010)
1766–1777.
- S. Gray, E. Zanre, S. Gray, Fuzzy Cognitive Maps as Representations
of Mental Models and Group Beliefs, E. Papageorgiou,
Ed., Fuzzy Cognitive Maps for Applied Sciences and Engineering
from Fundamentals to Extensions and Learning Algorithms,
Springer, Berlin, 2014, pp. 29–48.
- R. Axelrod, Structure of Decision: The Cognitive Maps of
Political Elites, Princeton University Press, Princeton, NJ, USA,
1976.
- B. Kosko, Adaptive Inference in Fuzzy Knowledge Networks,
Proc. First IEEE International Conference on Neural Networks
(ICNN-86), San Diego, CA, 1987, pp. 261–268.
- B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1991.
- K. Kokkinos, E. Lakioti, E. Papageorgiou, K. Moustakas,
V. Karayannis, Fuzzy cognitive map-based modeling of social
acceptance to overcome uncertainties in establishing waste
biorefinery facilities, Front. Energy Res., 6 Art. No 112 (2018)
1–17.
- U. Özesmi, S.L. Özesmi, Ecological models based on people’s
knowledge: a multi-step fuzzy cognitive mapping approach,
Ecol. Modell., 176 (2004) 43–64.
- U. Ozesmi, S. Ozesmi, A participatory approach to ecosystem
conservation: fuzzy cognitive maps and stakeholder group
analysis in Uluabat Lake, Turkey, J. Environ. Manage., 31 (2003)
518–531.
- K. Kok, The potential of fuzzy cognitive maps for semi-quantitative
scenario development, with an example from Brazil,
Global Environ. Change, 19 (2009) 122–133.
- E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis
with a fuzzy logic controller, Int. J. Man Mach. Stud., 7 (1975)
1–13.
- J. Bhardwaj, K.K. Gupta, R. Gupta, A Review of Emerging Trends
on Water Quality Measurement Sensors, 2015 International
Conference on Technologies for Sustainable Development
(ICTSD), IEEE, 2015, pp. 1–6.
- T.P. Lambrou, C.C. Anastasiou, C.G. Panayiotou, M.M. Polycarpou,
A low-cost sensor network for real-time monitoring
and contamination detection in drinking water distribution
systems, IEEE Sens. J., 5 (2014) 2765–2772.
- B. Milutinović, G. Stefanović, S. Milutinović, Z. Ćojbašić,
Application of fuzzy logic for evaluation of the level of social
acceptance of waste treatment, Clean Technol. Environ., 18 (2016)
1863–1875.
- L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) 338–353.
- L.A. Zadeh, Is there a need for fuzzy logic?, Inf. Sci., 178 (2008)
2751–2779.
- D. Dubois, H. Prade, Eds., Fundamentals of Fuzzy Sets, Kluwer
Academic, Boston, 2000.
- C. Pahl-Wostl, Transitions towards adaptive management of
water facing climate and global change, Water Resour. Manage.,
21 (2007) 49–62.
- C. Allan, A. Curtis, Learning to implement adaptive
management, Nat. Resour. Manage., 6 (2013) 23–28.
- M. Hill, Climate Change and Water Governance: Adaptive
Capacity in Chile and Switzerland, Advances in Global Change
Research 54, Springer, Heidelberg, 2013.
- C. Pahl-Wostl, M. Craps, A. Dewulf, E. Mostert, D. Tabara,
T. Taillieu, Social learning and water resources management,
Ecol. Soc., 12 (2007) 1047–1061.
- W. Rauch, K. Seggelke, R. Brown, P. Krebs, Integrated approaches
in urban storm drainage: where do we stand?, Environ.
Manage., 35 (2005) 396–409.
- R. McManus, R. Brown, The Increasing Organizational Uptake
of Source Control Approaches for Sustainable Storm Water
Management, Proc. 9th International Conference on Urban
Storm Drainage - CDROM, Portland, OR, USA, 2002.
- S. Hatfield-Dodds, G. Syme and A. Leitch, Improving Australian
water management: the contribution of social values research,
Reform, 89 (2007) 44–48.
- S.A. Gray, S. Gray, J.L. De Kok, A.E.R. Helfgott, B. O’Dwyer,
R. Jordan, A. Nyaki, Using fuzzy cognitive mapping as a
participatory approach to analyze change, preferred states, and
perceived resilience of social-ecological systems, Ecol. Soc., 20
(2015), Available at: http://dx.doi.org/10.5751/ES-07396-200211.
- J. Solana-Gutiérrez, G. Rincón, C. Alonso, D. García-de-Jalón,
Using fuzzy cognitive maps for predicting river management
responses: a case study of the Esla River basin, Spain, Ecol.
Modell., 360 (2013) 260–269.
- A. Kafetzis, N. McRoberts, I. Mouratiadou, Using Fuzzy
Cognitive Maps to Support the Analysis of Stakeholders’ Views
of Water Resource Use and Water Quality Policy, In: Fuzzy
Cognitive Maps, Springer, Berlin/Heidelberg, Germany, 2010,
pp. 383–402.
- E. Trutnevyte, C. Guivarch, R. Lempert, N. Strachan, Reinvigorating
the scenario technique to expand uncertainty consideration,
Clim. Change, 135 (2016) 373–379.
- K. Kok, I. Bärlund, M. Flörke, I. Holman, M. Gramberger,
J. Sendzimir, B. Stuch, K. Zellmer, European participatory
scenario development: strengthening the link between stories
and models, Clim. Change, 128 (2015) 187–200.
- B. Kosko, Adaptive Inference in Fuzzy Knowledge Networks,
D. Dubois, H. Prade, R.R. Yager, Eds., Readings Fuzzy Sets
Intell. Syst., Morgan Kaufman, San Mateo, 1993.
- A. Kontogianni, E. Papageorgiou, L. Salomatina, M. Skourtos,
B. Zanou, Risks for the Black Sea marine environment as
perceived by Ukrainian stakeholders: a fuzzy cognitive mapping
application, Ocean Coastal Manage., 62 (2012) 34–42.
- J.A. Dickerson, B. Kosko, Virtual worlds as fuzzy cognitive
maps, Presence, 3 (1994) 173–189.
- W. Stach, L. Kurgan, W. Pedrycz, Data-Driven Nonlinear Hebbian
Learning Method for Fuzzy Cognitive Maps, IEEE World
Congress on Computational Intelligence, Hong Kong, Jun. 1–6,
2008, pp. 1975–1981.
- A. Konar, U.K. Chakraborty, Reasoning and unsupervised
learning in a fuzzy cognitive map, Inf. Sci., 170 (2005) 419–441.
- A.V. Huerga, A Balanced Differential Learning Algorithm in
Fuzzy Cognitive Maps, Proc.16th International Workshop on
Qualitative Reasoning, Sitges/Barcelona, Spain, 2002.
- N.H. Mateou, M. Moiseos, A.S. Andreou, Multi-Objective
Evolutionary Fuzzy Cognitive Maps for Decision Support, Proc.
2005 IEEE Congress on Evolutionary Computation, Edinburgh,
U.K., 2005, pp. 824–830.
- Y.G. Petalas, E.I. Papageorgiou, K.E. Parsopoulos, P.P. Groumpos,
M.N. Vrahatis, Fuzzy cognitive maps learning using
memetic algorithms, Fuzzy Cognitive Maps Learning Using
Memetic Algorithms, Lecture Series on Computer and Computational
Sciences, Volume 1, Brill Academic Publishers,
The Netherlands, 2005, pp. 1–4.
- E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, Active Hebbian
learning algorithm to train fuzzy cognitive maps, Int. J.
Approximate Reasoning, 37 (2004) 219–249.
- W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Genetic learning
of fuzzy cognitive maps, Fuzzy Sets Syst., 153 (2005) 371–401.
- D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, Learning
Fuzzy Cognitive Maps Using Evolution Strategies: A Novel
Schema for Modeling and Simulating High-Level Behavior,
Proc. 2001 Congress on Evolutionary Computation, 2001,
pp. 364–371.
- S. Alizadeh, M. Ghazanfari, M. Jafari, S. Hooshmand, Learning
FCM by tabu search, Int. J. Comput. Sci., 2 (2007) 142–149.
- E.I. Papageorgiou, P.P. Groumpos, A weight adaptation method
for fine-tuning fuzzy cognitive map causal links, Soft Comput.
J., 9 (2005) 846–857.
- Mental Modeler Software, 2019. Available at: www.mentamodeler.org, Last accessed 7th of February, 2019.
- B. Kosko, Fuzzy cognitive maps, Int. J. Man Mach. Stud.,
24 (1986) 65–75.