References

  1. S. Bruaset, H. Rygg, S. Sægrov, Reviewing the long-term sustainability of urban water system rehabilitation strategies with an alternative approach, Sustainability, 10 (2018) 1–30.
  2. R.C. Marques, N.F. da Cruz, J. Pires, Measuring the sustainability of urban water services, Environ. Sci. Policy, 54 (2015) 142–151.
  3. K. Van Leeuwen, J. Frijns, A. Van Wezel, Indicators for the Sustainability of the Urban Water Cycle, Watercycle Research Institute (KWR), The Netherlands, 2011.
  4. A.N. Baklavaridis, P.E. Samaras, V. Karayannis, Recent progress in the advanced oxidation of wastewaters using recycled fly ashes as alternative catalytic agents, Desal. Wat. Treat., 133 (2018) 292–306.
  5. L. Shi, Research on dynamic model of optimal simulation system for urban water resources sustainable utilization based on complex scientific management, Desal. Wat. Treat., 125 (2018) 156–163.
  6. K. Balakrishnan, N.A. Zakaria, K.Y. Foo, Evolution of sustainable product service system in the water management practice, Desal. Wat. Treat., 90 (2017) 147–156
  7. R.R. Brown, N. Keath, T.H. Wong, Urban water management in cities: historical, current and future regimes, Water Sci. Technol., 59 (2009) 47–855.
  8. G. Thornton, M. Franz, D. Edwards, G. Pahlen, P. Nathanail, The challenge of sustainability: incentives for brownfield regeneration in Europe, Environ. Sci. Policy, 10 (2007) 116–134.
  9. R.M. Bijlsma, P.W.G. Bots, H.A. Wolters, A.Y. Hoekstra, An empirical analysis of stakeholders’ influence on policy development: the role of uncertainty handling, Ecol. Soc., 16 (2011), Available at: http://www.ecologyandsociety.org/vol16/iss1/art51/.
  10. F. Su, H.-y. Shang, Social water cycle and sustainable consumption in the perspective of water footprint – taken the low water consumption patterns of Zhangye city as a case, Desal. Wat. Treat., 122 (2018) 170–175.
  11. F.W. Geels, The multi-level perspective on sustainability transitions: responses to seven criticisms, Environ. Innovation Societal Transitions, 1 (2011) 24–40.
  12. N. Rahmanian, S.H.B. Ali, M. Homayoonfard, N.J. Ali, M. Rehan, Y. Sadef, A.S. Nizami, Analysis of physiochemical parameters to evaluate the drinking water quality in the state of perak, Malaysia, J. Chem. N.Y., 2015 (2015), http://dx.doi. org/10.1155/2015/716125.
  13. B. Zheng, J. Zhao, D. You, Study on the coupling relationship between water environment and social economy in Ganjiang River basin, Desal. Wat. Treat., 122 (2018) 14–19.
  14. X.-y. Zhang, Q.-t. Zuo, Q.-x. Yang, Calculation of the water resources dynamic carrying capacity of Tarim River basin under climate change, Desal. Wat. Treat., 119 (2018) 243–252.
  15. M. Gul, M.G. Akpinar, R.F. Ceylan, Water use efficiency of urban households in the Mediterranean region of Turkey, Desal. Wat. Treat., 76 (2017) 364–368.
  16. F. Berkes, J. Colding, C. Folke, Eds., Navigating Social–Ecological Systems: Building Resilience for Complexity and Change, Cambridge University Press, Cambridge, 2003.
  17. C. Folke, S. Carpenter, T. Elmqvist, L. Gunderson, C.S. Holling, B. Walker, Resilience and sustainable development: building adaptive capacity in a world of transformations, Ambio, 31 (2002) 437–440.
  18. M.R. Alizadeh, M.R. Nikoo, G.R. Rakhshandehroo, Developing a multi-objective conflict-resolution model for optimal groundwater management based on fallback bargaining models and social choice rules: a case study, Water Resour. Manage., 31 (2017) 1457–1472.
  19. A.R. Keshtkar, B. Asefjah, A. Afzali, Application of multicriteria decision-making approach in catchment modeling and management, Desal. Wat. Treat., 116 (2018) 83–95.
  20. A.R. Keshtkar, B. Asefjah, Y. Erfanifard, A. Afzali, Application of MCDM for biologically based management scenario analysis in integrated catchment assessment and management, Desal. Wat. Treat., 65 (2017) 243–251.
  21. B. Kingdom, R. Liemberger, P. Marin, The Challenge of Reducing Non-Revenue Water (NRW) in Developing Countries. How the Private Sector Can Help: A Look at Performance-Based Service Contracting, Water Supply and Sanitation Board Discussion Paper Series, Paper No. 8, The World Bank Group, Washington D.C., USA, 2006.
  22. S. Nannapaneni, S. Mahadevan, S. Rachuri, Performance evaluation of a manufacturing process under uncertainty using Bayesian networks, J. Cleaner Prod., 113 (2016) 947–959.
  23. C. Tang, Y. Yi, Z. Yang, J. Sun, Risk forecasting of pollution accidents based on an integrated Bayesian Network and water quality model for the South to North Water Transfer Project, J. Ecol. Eng., 96 (2016) 109–116.
  24. E. Magiera, W. Froelich, Application of Bayesian Networks to the Forecasting of Daily Water Demand, IDT 2017: Intelligent Decision Technologies, Springer International Publishing, New York City, USA, 2015, pp. 385–393.
  25. D.C. Hall, Q.B. Le, Use of Bayesian networks in predicting contamination of drinking water with E. coli in rural Vietnam, Trans. R. Soc. Trop. Med. Hyg., 111 (2017) 270–277.
  26. W. Wu, G.C. Dandy, H.R. Maier, Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling, Environ. Modell. Software, 54 (2014) 108–127.
  27. I.K. Kalavrouziotis, F. Pedrero, D. Skarlatos, Water and wastewater quality assessment based on fuzzy modeling for the irrigation of Mandarin, Desal. Wat. Treat., 57 (2016) 20159– 20168.
  28. C.M. Raymond, I. Fazey, M.S. Reed, L.C. Stringer, G.M. Robinson, A.C. Evely, Integrating local and scientific knowledge for environmental management, J. Environ. Manage., 91 (2010) 1766–1777.
  29. S. Gray, E. Zanre, S. Gray, Fuzzy Cognitive Maps as Representations of Mental Models and Group Beliefs, E. Papageorgiou, Ed., Fuzzy Cognitive Maps for Applied Sciences and Engineering from Fundamentals to Extensions and Learning Algorithms, Springer, Berlin, 2014, pp. 29–48.
  30. R. Axelrod, Structure of Decision: The Cognitive Maps of Political Elites, Princeton University Press, Princeton, NJ, USA, 1976.
  31. B. Kosko, Adaptive Inference in Fuzzy Knowledge Networks, Proc. First IEEE International Conference on Neural Networks (ICNN-86), San Diego, CA, 1987, pp. 261–268.
  32. B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, Englewood Cliffs, NJ, USA, 1991.
  33. K. Kokkinos, E. Lakioti, E. Papageorgiou, K. Moustakas, V. Karayannis, Fuzzy cognitive map-based modeling of social acceptance to overcome uncertainties in establishing waste biorefinery facilities, Front. Energy Res., 6 Art. No 112 (2018) 1–17.
  34. U. Özesmi, S.L. Özesmi, Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach, Ecol. Modell., 176 (2004) 43–64.
  35. U. Ozesmi, S. Ozesmi, A participatory approach to ecosystem conservation: fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey, J. Environ. Manage., 31 (2003) 518–531.
  36. K. Kok, The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil, Global Environ. Change, 19 (2009) 122–133.
  37. E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man Mach. Stud., 7 (1975) 1–13.
  38. J. Bhardwaj, K.K. Gupta, R. Gupta, A Review of Emerging Trends on Water Quality Measurement Sensors, 2015 International Conference on Technologies for Sustainable Development (ICTSD), IEEE, 2015, pp. 1–6.
  39. T.P. Lambrou, C.C. Anastasiou, C.G. Panayiotou, M.M. Polycarpou, A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems, IEEE Sens. J., 5 (2014) 2765–2772.
  40. B. Milutinović, G. Stefanović, S. Milutinović, Z. Ćojbašić, Application of fuzzy logic for evaluation of the level of social acceptance of waste treatment, Clean Technol. Environ., 18 (2016) 1863–1875.
  41. L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) 338–353.
  42. L.A. Zadeh, Is there a need for fuzzy logic?, Inf. Sci., 178 (2008) 2751–2779.
  43. D. Dubois, H. Prade, Eds., Fundamentals of Fuzzy Sets, Kluwer Academic, Boston, 2000.
  44. C. Pahl-Wostl, Transitions towards adaptive management of water facing climate and global change, Water Resour. Manage., 21 (2007) 49–62.
  45. C. Allan, A. Curtis, Learning to implement adaptive management, Nat. Resour. Manage., 6 (2013) 23–28.
  46. M. Hill, Climate Change and Water Governance: Adaptive Capacity in Chile and Switzerland, Advances in Global Change Research 54, Springer, Heidelberg, 2013.
  47. C. Pahl-Wostl, M. Craps, A. Dewulf, E. Mostert, D. Tabara, T. Taillieu, Social learning and water resources management, Ecol. Soc., 12 (2007) 1047–1061.
  48. W. Rauch, K. Seggelke, R. Brown, P. Krebs, Integrated approaches in urban storm drainage: where do we stand?, Environ. Manage., 35 (2005) 396–409.
  49. R. McManus, R. Brown, The Increasing Organizational Uptake of Source Control Approaches for Sustainable Storm Water Management, Proc. 9th International Conference on Urban Storm Drainage - CDROM, Portland, OR, USA, 2002.
  50. S. Hatfield-Dodds, G. Syme and A. Leitch, Improving Australian water management: the contribution of social values research, Reform, 89 (2007) 44–48.
  51. S.A. Gray, S. Gray, J.L. De Kok, A.E.R. Helfgott, B. O’Dwyer, R. Jordan, A. Nyaki, Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems, Ecol. Soc., 20 (2015), Available at: http://dx.doi.org/10.5751/ES-07396-200211.
  52. J. Solana-Gutiérrez, G. Rincón, C. Alonso, D. García-de-Jalón, Using fuzzy cognitive maps for predicting river management responses: a case study of the Esla River basin, Spain, Ecol. Modell., 360 (2013) 260–269.
  53. A. Kafetzis, N. McRoberts, I. Mouratiadou, Using Fuzzy Cognitive Maps to Support the Analysis of Stakeholders’ Views of Water Resource Use and Water Quality Policy, In: Fuzzy Cognitive Maps, Springer, Berlin/Heidelberg, Germany, 2010, pp. 383–402.
  54. E. Trutnevyte, C. Guivarch, R. Lempert, N. Strachan, Reinvigorating the scenario technique to expand uncertainty consideration, Clim. Change, 135 (2016) 373–379.
  55. K. Kok, I. Bärlund, M. Flörke, I. Holman, M. Gramberger, J. Sendzimir, B. Stuch, K. Zellmer, European participatory scenario development: strengthening the link between stories and models, Clim. Change, 128 (2015) 187–200.
  56. B. Kosko, Adaptive Inference in Fuzzy Knowledge Networks, D. Dubois, H. Prade, R.R. Yager, Eds., Readings Fuzzy Sets Intell. Syst., Morgan Kaufman, San Mateo, 1993.
  57. A. Kontogianni, E. Papageorgiou, L. Salomatina, M. Skourtos, B. Zanou, Risks for the Black Sea marine environment as perceived by Ukrainian stakeholders: a fuzzy cognitive mapping application, Ocean Coastal Manage., 62 (2012) 34–42.
  58. J.A. Dickerson, B. Kosko, Virtual worlds as fuzzy cognitive maps, Presence, 3 (1994) 173–189.
  59. W. Stach, L. Kurgan, W. Pedrycz, Data-Driven Nonlinear Hebbian Learning Method for Fuzzy Cognitive Maps, IEEE World Congress on Computational Intelligence, Hong Kong, Jun. 1–6, 2008, pp. 1975–1981.
  60. A. Konar, U.K. Chakraborty, Reasoning and unsupervised learning in a fuzzy cognitive map, Inf. Sci., 170 (2005) 419–441.
  61. A.V. Huerga, A Balanced Differential Learning Algorithm in Fuzzy Cognitive Maps, Proc.16th International Workshop on Qualitative Reasoning, Sitges/Barcelona, Spain, 2002.
  62. N.H. Mateou, M. Moiseos, A.S. Andreou, Multi-Objective Evolutionary Fuzzy Cognitive Maps for Decision Support, Proc. 2005 IEEE Congress on Evolutionary Computation, Edinburgh, U.K., 2005, pp. 824–830.
  63. Y.G. Petalas, E.I. Papageorgiou, K.E. Parsopoulos, P.P. Groumpos, M.N. Vrahatis, Fuzzy cognitive maps learning using memetic algorithms, Fuzzy Cognitive Maps Learning Using Memetic Algorithms, Lecture Series on Computer and Computational Sciences, Volume 1, Brill Academic Publishers, The Netherlands, 2005, pp. 1–4.
  64. E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, Active Hebbian learning algorithm to train fuzzy cognitive maps, Int. J. Approximate Reasoning, 37 (2004) 219–249.
  65. W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Genetic learning of fuzzy cognitive maps, Fuzzy Sets Syst., 153 (2005) 371–401.
  66. D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, Learning Fuzzy Cognitive Maps Using Evolution Strategies: A Novel Schema for Modeling and Simulating High-Level Behavior, Proc. 2001 Congress on Evolutionary Computation, 2001, pp. 364–371.
  67. S. Alizadeh, M. Ghazanfari, M. Jafari, S. Hooshmand, Learning FCM by tabu search, Int. J. Comput. Sci., 2 (2007) 142–149.
  68. E.I. Papageorgiou, P.P. Groumpos, A weight adaptation method for fine-tuning fuzzy cognitive map causal links, Soft Comput. J., 9 (2005) 846–857.
  69. Mental Modeler Software, 2019. Available at: www.mentamodeler.org, Last accessed 7th of February, 2019.
  70. B. Kosko, Fuzzy cognitive maps, Int. J. Man Mach. Stud., 24 (1986) 65–75.