References
- K.T. Chung, Azo dyes and human health: a review, J. Environ.
Sci. Health C, 34 (2016) 233–261.
- P.F. Gordon, P. Gregory, Azo dyes, In: Organic Chemistry in
Colour, Springer, Berlin Heidelberg, 1987, pp. 95–162.
- J. Smith, L. Hong-Shum, Food Additives Data Book, John Wiley
& Sons, United Kingdom, 2003.
- K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, V. Sidey,
Spectrophotometric and theoretical studies of the protonation
of Allura Red AC and Ponceau 4R, J. Mol. Struct., 1144 (2015)
216–244.
- A.M. Contento, Nuevos métodos fotométricos y cromatográficos
para la determinación de colorantes rojos en alimentos,
Ediciones de la Universidad de Castilla-La Mancha, Cuenca,
1997.
- EFSA Panel on Food Additives and Nutrient Sources added
to Food, Scientific Opinion on the reevaluation of Ponceau
4R (E 124) as a food additive on request from the European
Commission, EFSA J., 7 (2009) 1–39.
- S. Tsuda, M. Murakami, N. Matsusaka, K. Kano, K. Taniguchi,
Yu F. Sasaki, DNA damage induced by red food dyes orally
administered to pregnant and male mice, Toxicol. Sci., 61 (2001)
92–99.
- J. König, Food Colour Additives of Synthetic Origin, In:
M.J. Scotter, Colour Additives for Foods and Beverages,
Woodhead Publishing, 2015, pp. 35–60.
- National Center for Biotechnology Information, PubChem
Compound Database; CID=9570119. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/New_coccine.
- L. Pereira, M. Alves, Dyes—Environmental Impact and
Remediation; In: A. Malik, E. Grohmann, Environmental
Protection Strategies for Sustainable Development, Springer,
New York, 2012, pp. 111–162.
- C. Benincá, P. Peralta-Zamora, C. Regina, G. Tavares, L. Igarashi-
Mafra, Degradation of an azo dye (Ponceau 4R) and treatment
of wastewater from a food industry by ozonation, Ozone–Sci.
Eng., 35 (2013) 295–301.
- Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in
wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
- J.P. Kehrer, J.D. Robertson, C.V. Smith, Free Radicals and
Reactive Oxygen Species, In: C.A. McQueen, Comprehensive
Toxicology, 3rd ed., Elsevier, 2018, pp. 262–294.
- S.C. Ameta, Introduction, In: S.C. Ameta, R. Ameta, Advanced
Oxidation Processes for Wastewater Treatment, Emerging
Green Chemical Technology, 1st ed., Academic Press, 2018,
pp. 1–12.
- S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Photolysis
of aqueous H2O2: quantum yield and applications for
polychromatic UV actinometry in photoreactors, Environ. Sci.
Technol., 41 (2007) 7486–7490.
- J.C. Mierzwa, R. Rodrigues, A.C.S.C. Teixeira, UV-Hydrogen
Peroxide Processes, In: S.C. Ameta, R. Ameta, Advanced
Oxidation Processes for Waste Water Treatment Emerging
Green Chemical Technology, 1st ed., Academic Press, 2018,
pp. 13–48.
- D. Spuhler, J.A. Rengifo-Herrera, C. Pulgarín, The effect of Fe2+,
Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on
the solar disinfection (SODIS) at low temperatures of water
containing Escherichia coli K12, Appl. Catal., B, 96 (2010) 126–141.
- G. Cruz-González, C. Julcour, H. Chaumat, U. Jáuregui-Haza,
H. Delmas, Degradation of 2,4-dichlorophenoxyacetic acid by
photolysis and photo-Fenton oxidation, J. Environ. Chem. Eng.,
6 (2018) 874–882.
- D.H. Quiñones, P.M. Álvarez, A. Rey, S. Contreras,
F.J. Beltrán, Application of solar photocatalytic ozonation for
the degradation of emerging contaminants in water in a pilot
plant, Chem. Eng. J., 260 (2015) 399–410.
- J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous
photo-Fenton oxidation with pillared clay-based catalysts for
wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
- K. Sivagami, K.P. Sakthivel, I.M. Nambi, Advanced oxidation
processes for the treatment of tannery wastewater, J. Environ.
Chem. Eng., 6 (2018) 3656–3663.
- M. Aleksić, H. Kušić, N. Koprivanac, D. Leszczynska,
A. Lončarić, Heterogeneous Fenton type processes for the
degradation of organic dye pollutant in water — The application
of zeolite assisted AOPs, Desalination, 257 (2010) 22–29.
- J. He, X. Yang, B. Men, D. Wang, Interfacial mechanisms of
heterogeneous Fenton reactions catalyzed by iron-based
materials: a review, J. Environ. Sci., 39 (2016) 97–109.
- B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Catalytic
ozonation and methods of enhancing molecular ozone reactions
in water treatment, Appl. Catal., B, 46 (2003) 639–669.
- G. Merényi, J. Lind, S. Naumov, C. von Sonntag, Reaction of
ozone with hydrogen peroxide (peroxone process): a revision
of current mechanistic concepts based on thermokinetic and
quantum-chemical considerations, Environ. Sci. Technol.,
44 (2010) 3505–3507.
- F. Beduk, M. Emin, A. Ozcan, Degradation of malathion
and parathion by ozonation, photolytic ozonation, and
heterogeneous catalytic ozonation processes, Clean Soil Air
Water, 40 (2012) 179–187.
- P.S. Bailey, The reactions of ozone with organic compounds,
Chem. Rev., 58 (1958) 925–1010.
- M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic
ozonation used for the treatment of water and wastewater,
Chem. Eng. J., 263 (2015) 209–219.
- A.G. Trovó, T.F.S. Silva, O. Gomes, A.E.H. Machado, W. Borges,
P.S. Muller, D. Daniel, Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using
experimental design, Chemosphere, 90 (2013) 170–175.
- Y. Yang, J. Pignatello, J. Ma, W. Mitch, Effect of matrix
components on UV/H2O2 and UV/S2O82– advanced oxidation
processes for trace organic degradation in reverse osmosis
brines from municipal wastewater reuse facilities, Water Res.,
89 (2016) 192–200.
- S. Jiménez, M. Andreozzi, M.M. Micó, M.G. Álvarez,
S. Contreras, Produced water treatment by advanced oxidation
processes, Sci. Total Environ., 666 (2019) 12–21.
- J. Bacardit, J. Stötzner, E. Chamarro, S. Esplugas, Effect of
salinity on the photo-Fenton process, Ind. Eng. Chem. Res., 46
(2007) 7615–7619.
- M. Brumovský, J. Bečanová, J. Kohoutek, M. Borghini,
L. Nizzetto, Contaminants of emerging concern in the open
sea waters of the Western Mediterranean, Environ. Pollut., 229
(2017) 976–983.
- L. Arpin-Pont, M.J. Martinez, E. Gomez, H. Fenet, Occurrence
of PPCPs in the marine environment: a review, Environ. Sci.
Pollut. Res., 23 (2016) 4978–4991.
- S. Burgos-Núñez, A. Navarro-Frómeta, J. Marrugo-Negrete,
G. Enamorado-Montes, I. Urango-Cárdena, Polycyclic aromatic
hydrocarbons and heavy metals in the Cispata Bay, Colombia:
A marine tropical ecosystem, Mar. Pollut. Bull., 120 (2017)
379–386.
- M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Enhanced
Fenton-like degradation of methylene blue by magnetically
activated carbon/hydrogen peroxide with hydroxylamine as
Fenton enhancer, J. Mol. Liq., 216 (2016) 781–787.
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic,
L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles:
synthesis, stabilization, vectorization, physicochemical
characterizations, and biological applications, Chem. Rev.,
108 (2008) 2064–2110.
- B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point
of zero charge and intrinsic equilibrium constants of activated
carbon cloth, Carbon, 37 (1999) 477–481.
- W. Masschelein, M. Denis, R. Ledent, Spectrophotometric
determination of residual hydrogen peroxide, Water Sewage
Works, 124 (1977) 69–72.
- E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods
for the Examination of Water and Wastewater, 23rd ed.,
American Public Health Association, American Water Works
Association, Water Pollution Control Federation, New York,
2017.
- W. Kim, C.Y. Suh, S.W. Cho, K.M. Roh, H. Kwon, K. Song,
I.J. Shon, A new method for the identification and quantification
of magnetite–maghemite mixture using conventional X-ray
diffraction technique, Talanta, 94 (2012) 348–352.
- A. Sarswat, D. Mohan, Sustainable development of coconut
shell activated carbon (CSAC) and a magnetic coconut shell
activated carbon (MCSAC) for phenol (2-nitrophenol) removal,
RSC Adv. 6 (2016) 85390–85410.
- Z.Y. Bai, Q. Yang, J.L. Wang, Fe3O4/multi-walled carbon
nanotubes as an efficient catalyst for catalytic ozonation of
p-hydroxybenzoic acid, Int. J. Environ. Sci. Technol., 13 (2016)
483–492.
- H. Gupta, R. Kumar, H.S. Park, B.H, Jeon, Photocatalytic
efficiency of iron oxide nanoparticles for the degradation of
priority pollutant anthracene, Geosyst. Eng., 20 (2017) 21–27.
- D. Beydoun, G.K.C. Low, S. McEvoy, Novel photocatalyst:
titania-coated magnetite. Activity and photodissolution,
J. Phys. Chem. B, 104 (2000) 4387–4396.
- S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Synergistic and
competitive adsorption of organic dyes on multiwalled carbon
nanotubes, Chem. Eng. J., 197 (2012) 34–40.
- L.R. Radovic, I.F. Silva, J.I. Ume, J.A. Menéndez, C.A.L.Y. Leon,
A.W. Scaroni, An experimental and theoretical study of the
adsorption of aromatics possessing electron-withdrawing and
electron-donating functional groups by chemically modified
activated carbons, Carbon, 35 (1997) 1339–1348.
- A.S. Özen, P. Doruker, V. Aviyente, Effect of cooperative
hydrogen bonding in azo−hydrazone tautomerism of azo dyes,
J. Phys. Chem. A, 111 (2007) 13506–13514.
- A. Lopez, H. Benbelkacem, J.S. Pic, H. Oxidation pathways
for ozonation of azo dyes in a semi‐batch reactor: a kinetic
parameters approach, Environ. Technol., 25 (2004) 311–321.
- M. Matsui, Y. Iwata, T. Kato, K. Shibata, Reaction of aromatic
azo compounds with ozone, Dyes Pigm., 9 (1988) 109–117.
- C.H. Kuo, L. Zhong, M.E. Zappi, A.P. Hong, Kinetics and
mechanism of the reaction between ozone and hydrogen
peroxide in aqueous solutions, Can. J. Chem. Eng., 77 (1999)
473–482.
- K. Sharma, R.K. Vyas, K. Singh, A.K Dalai, Degradation of
a synthetic binary dye mixture using reactive adsorption:
experimental and modeling studies, J. Environ. Chem. Eng.,
6 (2018) 5732–5743.
- H. Valdes, C.A. Zaror, Heterogeneous and homogeneous
catalytic ozonation of benzothiazole promoted by activated
carbon: kinetic approach, Chemosphere, 65 (2006) 1131–1136.
- J. Rivera-Utrilla, M. Sánchez-Polo, Ozonation of
1,3,6-naphthalenetrisulphonic acid catalysed by activated
carbon in aqueous phase, Appl. Catal., B, 39 (2002) 319–329.
- M. Muruganandham, M. Swaminathan, Photochemical
oxidation of reactive azo dye with UV–H2O2 process, Dyes
Pigm., 62 (2004) 269–275.
- C. Galindo, A. Kalt, UV-H2O2 oxidation of monoazo dyes in
aqueous media: a kinetic study, Dyes Pigm., 40 (1998) 27–35.
- A.L. Pham, C. Lee, F.M. Doyle, D.L. Sedlak, A silicasupported
iron oxide catalyst capable of activating hydrogen
peroxide at neutral pH values, Environ. Sci. Technol.,
43 (2009) 8930–8935.
- J.A. Zazo, G. Pliego, S. Blasco, J.A. Casas, J.J. Rodriguez,
Intensification of the Fenton process by increasing the
temperature, Ind. Eng. Chem. Res., 50 (2011) 866–870.
- A.C. Gomesa, J.C. Nunesa, R.M.S. Simões, Determination of
fast ozone oxidation rate for textile dyes by using a continuous
quench-flow system, J. Hazard. Mater., 178 (2010) 57–65.
- F.J. Beltrán, P. Álvarez, Rate constant determination of ozoneorganic
fast reactions in water using an agitated cell, J. Environ.
Sci. Health A, 31 (1996) 1159–1178.
- R. Maciel, G.L. Sant’Anna, M. Dezotti, Phenol removal from
high salinity effluents using Fenton’s reagent and photo-Fenton
reactions, Chemosphere, 57 (2004) 711–719.