References
- J.K. Edzwald, Dissolved air flotation and me, Water Res.,
44 (2010) 2077–2106.
- J.K. Edzwald, Principles and applications of dissolved air
flotation, Water Sci. Technol., 31 (1995) 1–23.
- A. Besson, P. Guiraud, Characterization of Bubbles Produced by
Dissolved Air Flotation in Saline Water, in Flotation for Water
and Wastewater Systems, IWA, New York, USA, 2012.
- S.E. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for
environmental and industrial separations, Sep. Purif. Technol.,
11 (1997) 221–232.
- S.-H. Kim, C.-S. Min, S.K. Lee, Application of dissolved air
flotation as pretreatment of seawater desalination, Desal. Wat.
Treat., 33 (2011) 261–266.
- J. Haarhoff, J.K. Edzwald, Adapting dissolved air flotation for
the clarification of seawater, Desalination, 311 (2013) 90–94.
- T. Kim, T. Temesgen, H. Park, M.Y. Han, Physical characteristics
of bubbles in dissolved air flotation processes in seawater reverse
osmosis desalination plants, Desal. Wat. Treat., 70 (2017) 19–23.
- A. Dassey, C. Theegala, Optimizing the air dissolution parameters
in an unpacked dissolved air flotation system, Water,
4 (2011) 1–11.
- S. Steinbach, J. Haarhoff, Air transfer efficiency of packed
saturators used in DAF, J. AWWA, 89 (1997) 71–82.
- V.R. Fanaie, M. Khiadani, T. Ayres, Effects of internal geometry
on hydrodynamics of dissolved air flotation (DAF) tank: an
experimental study using particle image velocimetry (PIV),
Colloids Surf., A, 575 (2019) 382–390.
- D.M. Leppinen, S.B. Dalziel, Bubble size distribution in
dissolved air flotation tanks, J. Water Supply Res. Technol.
AQUA, 53 (2004) 531–543.
- J. Edzwald, J. Haarhoff, Dissolved Air Flotation for Water
Clarification, McGraw Hill Professional, U.S.A., 2011.
- J. Haarhoff, S. Steinbach, A comprehensive method for
measuring the air transfer efficiency of pressure saturators,
Water Res., 31 (1997) 981–990.
- A. Bahadori, G. Zahedi, S. Zendehboudi, M. Bahadori, Estimation
of air concentration in dissolved air flotation (DAF)
systems using a simple predictive tool, Chem. Eng. Res. Des.,
91 (2013) 184–190.
- R.A. Conway, R.F. Nelson, High Solubility Gas Flotation in
Liquid–Solid Separation, Google Patents, 1981.
- D.A. Lovett, S.M. Travers, R.L. Maas, Treatment of abattoir
wastewater by dissolved air flotation. Part 1. - wastewater not
pretreated, Meat Res. Report, 9 (1984) 1–35.
- J.G. Henry, R. Gehr, Dissolved air flotation for primary and
secondary clarification, Sewage Collection and Treatment
Report SCAT-9, Project sponsored by Canada Mortgage &
Housing Corporation and Environment, Canada, 1981.
- S. Steinbach, J. Haarhoff, A simplified method for assessing the
saturation efficiency at full-scale dissolved air flotation plants,
Water Sci. Technol., 38 (1998) 303–310.
- W.T. Shannon, D.H. Buisson, Dissolved air flotation in hot
water, Water Res., 14 (1980) 759–765.
- J. Haarhoff, S. Steinbach, A model for the prediction of the
air composition in pressure saturators, Water Res., 30 (1996)
3074–3082.
- R. Sander, Compilation of Henry’s law constants (version
4.0) for water as solvent, Atmos. Chem. Phys., 15 (2015)
4399–4981.
- K.G. Nayar, M.H. Sharqawy, L.D. Banchik, Thermophysical
properties of seawater: a review and new correlations that
include pressure dependence, Desalination, 390 (2016) 1–24.
- R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, Probability and
statistics for engineers and scientists, Vol. 5, Macmillan, New
York, 1993.
- K. Akita, F. Yoshida, Bubble size, interfacial area, and liquidphase
mass transfer coefficient in bubble columns, J. Ind. Eng.
Chem., 13 (1974) 84–91.
- J.H. Lee, N.R. Foster, Measurement of gas-liquid mass transfer
in multi-phase reactors, Appl. Catal., 63 (1990) 1–36.
- Y. Zhu, J. Wu, Gas/liquid mass transfer in hot sparged systems,
Dev. Chem. Eng. Min. Process, 12 (2004) 323–332.
- A. Suresh, T. Sridhar, O. Potter, Mass transfer and solubility
in autocatalytic oxidation of cyclohexane, AIChE J., 34 (1988)
55–68.
- C. Chapman, L. Gibilaro, A. Nienow, A dynamic response
technique for the estimation of gas—liquid mass transfer
coefficients in a stirred vessel, Chem. Eng. Sci., 37 (1982)
891–896.
- H. Yagi, F. Yoshida, Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessels, Ind. Eng. Chem.
Process Des. Dev., 14 (1975) 488–493.
- A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise
velocity in gas−liquid systems: a review, Ind. Eng. Chem. Res.,
44 (2005) 5873–5931.
- F.W. Cain, J.C. Lee, A technique for studying the drainage and
rupture of unstable liquid films formed between two captive
bubbles: measurements on KCl solutions, J. Colloid Interface
Sci., 106 (1985) 70–85.
- V.S.J. Craig, B.W. Ninham, R.M. Pashley, Effect of electrolytes on
bubble coalescence, Nature, 364 (1993) 10192–10197.
- L.A. Del Castillo, S. Ohnishi, R.G. Horn, Inhibition of bubble
coalescence: Effects of salt concentration and speed of approach,
J. Colloid Interface Sci., 356 (2011) 316–324.
- D.K. Ruen-ngam, P. Wongsuchoto, A. Limpanuphap,
T. Charinpanitkul, P. Pavasant, Influence of salinity on bubble
size distribution and gas–liquid mass transfer in airlift
contactors, Chem. Eng. J., 141 (2008) 222–232.
- A. Kawahara, M. Sadatomi, F. Matsuyama, H. Matsuura,
M. Tominaga, M. Noguchi, Prediction of micro-bubble
dissolution characteristics in water and seawater, Exp. Therm
Fluid Sci., 33 (2009) 883–894.
- R.J. Moffat, Using uncertainty analysis in the planning of an
experiment, J. Fluids Eng., 107 (1985) 173–178.
- J.P. Holman, Experimental Methods for Engineers, 8th ed.,
McGraw-Hill, U.S.A., 2011.