References
- M. Romano, H. Ferreyra, G. Ferreyroa, F.V. Molina, A. Caselli,
L. Barberis, P. Beldomenico, M. Uhart, Lead pollution from
waterfowl hunting in wetlands and rice fields in Argentina, Sci.
Total. Environ., 545 (2016) 104–113.
- N. Silva-Sánchez, J.E. Schofield, T.M. Mighall, A.M. Cortizas,
K.J. Edwards, L. Foser, Climate changes, lead pollution and soil
erosion in south Greenland over the past 700 years, Quaternary
Res., 84 (2015) 159–173.
- U. Förstner, G.T.W. Wittmann, Metal Pollution in the Aquatic
Environment, Springer, Berlin, Heidelberg, 1979.
- V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization
of alumina-coated carbon nanotubes and their application
for lead removal, J. Hazard. Mater., 185 (2011) 17–23.
- X. Huo, L. Peng, X. Xu, L. Zhang, B. Qiu, Z. Qi, Elevated blood
lead levels of children in Guiyu, an electronic waste recycling
town in China, Environ. Health Persp., 115 (2007) 1113–1117.
- J. Liu, Y. Ai, L. McCauley, J.P. Martin, C.H. Yan, X.M. Shen,
H. Needleman, Blood lead levels and associated sociodemographic
factors among preschool children in the South
Eastern region of China, Paediatr. Perinat, EP, 26 (2012) 61–69.
- Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi,
A. Montiel, Heavy metal removal from aqueous solutions by
activated phosphate rock, J. Hazard. Mater., 156 (2008) 412–420.
- M.K. Uddin, A review on the adsorption of heavy metals by
clay minerals, with special focus on the past decade, Chem.
Eng. J., 308 (2017) 438–462.
- O. Kaygili, S.V. Dorozhkin, T. Ates, A.A. Al-Ghamdi,
F. Yakuphanoglu, Dielectric properties of Fe doped hydroxyapatite
prepared by sol–gel method, Ceram. Int., 40 (2014) 9395–9402.
- Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang,
C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd (II) and Zn
(II) from aqueous solutions using magnetic hydroxyapatite
nanoparticles as adsorbents, Chem. Eng. J., 162 (2010)
487–494.
- L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism
of Pb (II) and methylene blue adsorption onto magnetic
carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015)
9759–9770.
- Y. Hashimoto, T. Sato, Removal of aqueous lead by poorlycrystalline
hydroxyapatites, Chemosphere, 69 (2007) 1775–1782.
- F. Fernane, S. Boudia, F. Aiouache, Removal Cu (II) and Ni (II)
by natural and synthetic hydroxyapatites: a comparative study,
Desal. Wat. Treat., 52 (2014) 2856–2862.
- X.Y. Zhao, Y.J. Zhu, J. Zhao, B.Q. Lu, F. Chen, C. Qi, J. Wu,
Hydroxyapatite nanosheet-assembled microspheres: hemoglobintemplated
synthesis and adsorption for heavy metal ions,
J. Colloid Interface Sci., 416 (2014) 11–18.
- S. Hokkanen, E. Repo, L.J. Westholm, S. Lou, T. Sainio,
M. Sillanpää, Adsorption of Ni2+, Cd2+, PO43− and NO3− from
aqueous solutions by nanostructured microfibrillated cellulose
modified with carbonated hydroxyapatite, Chem. Eng. J.,
252 (2014) 64–74.
- G. Udhayakumar, N. Muthukumarasamy, D. Velauthapillai,
S.B. Santhoshh, A. Vijayshankar, Magnesium incorporated
hydroxyapatite nanoparticles: preparation, characterization,
antibacterial and larvicidal activity, Arab. J. Chem., 11 (2018)
645–654.
- J.R. Ramya, K.T. Arul, K. Elayaraja, S.N. Kalkura, Physicochemical
and biological properties of iron and zinc ions
co-doped nanocrystalline hydroxyapatite, synthesized by
ultrasonication, Ceram. Int., 40 (2014) 16707–16717.
- Y. Nie, C. Hu, C. Kong, Enhanced fluoride adsorption using
Al (III) modified calcium hydroxyapatite, J. Hazard. Mater.,
233 (2012) 194–199.
- L. Chen, K.S. Zhang, J.Y. He, X.J. Huang, J.H. Liu, Enhanced
fluoride removal from water by sulfate-doped hydroxyapatite
hierarchical hollow microspheres, Chem. Eng. J., 285 (2016)
616–624.
- T. Suzuki, T. Hatsushika, M. Miyake, Synthetic hydroxyapatites
as inorganic cation exchangers. Part 2, J. Chem. Soc., Faraday
Trans., 78 (1982) 3605–3611.
- F. Fernane, M.O. Mecherri, P. Sharrock, M. Fiallo, R. Sipos,
Hydroxyapatite interactions with copper complexes, Mater. Sci.
Eng. C, 30 (2010) 1060–1064.
- Q.Y. Ma, S.J. Traina, T.J. Logan, In situ lead immobilization by
apatite. Environ. Sci. Technol., 27 (1993) 1803–1810.
- Y. Xu, F.W. Schwartz, Lead immobilization by hydroxyapatite
in aqueous solutions, J. Contam. Hydrol., 15 (1994) 187–206.
- E. Mavropoulos, A.M. Rossi, A.M. Costa, Studies on the
mechanisms of lead immobilization by hydroxyapatite, Environ.
Sci. Technol., 36 (2002) 1625–1629.
- L.P. Higuita, A.F. Vargas, M.J. Gil, L.F. Giraldo, Synthesis and
characterization of nanocomposite based on hydroxyapatite
and monetite, Mater. Lett., 175 (2016) 169–172.
- E. Ahmadzadeh, F. Talebnia, M. Tabatabaei, H. Ahmadzadeh,
B. Mostaghaci, Osteoconductive composite graft based on
bacterial synthesized hydroxyapatite nanoparticles doped with
different ions: from synthesis to in vivo studies, Nanomednanotechnol.,
12 (2016) 1387–1395.
- H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, Surface
characterization of hydroxyapatite and related calcium phosphates
by XPS and TOF-SIMS, Anal. Chem., 72 (2000) 2886–2894.
- S. Chander, D.W. Fuerstenau, An XPS study of the flouride
uptake by hydroxyapatite, Colloids Surf., 13 (1985) 137–144.
- K. Nagakane, Y. Yoshida, I. Hirata, R. Fukuda, Y. Nakayama,
K. Shirai, T. Ogawa, K. Suzuki, B.V. Meerbeek, M. Okazaki,
Analysis of chemical interaction of 4-MET with hydroxyapatite
using XPS, Dent. Mater. J., 25 (2006) 645–649.
- Y.J. Wang, J.H. Chen, Y.X. Cui, S.Q. Wang, D.M. Zhou, Effects
of low-molecular-weight organic acids on Cu (II) adsorption
onto hydroxyapatite nanoparticles, J. Hazard. Mater., 162 (2009)
1135–1140.
- N. Ohtsu, S. Hiromoto, M. Yamane, K. Satoh, M. Tomozawa,
Chemical and crystallographic characterizations of hydroxyapatiteand
octacalcium phosphate-coatings on magnesium synthesized
by chemical solution deposition using XPS and XRD, Surf. Coat.
Technol., 218 (2013) 114–118.
- R.M. Wilson, J.C. Elliott, S.E.P. Dowker, L.M. Rodriguez-Lorenzo, Rietveld refinements and spectroscopic studies of
the structure of Ca-deficient apatite, Biomaterials, 26 (2005)
1317–1327.
- Z.S. Tao, W.S. Zhou, X.W. He, W. Liu, B.L. Bai, Q. Zhou,
Z. L. Huang, K. Tu, H. Li, T. Sun, Y. X. Lv, W. Cui, L. Yang, A
comparative study of zinc, magnesium, strontium incorporated
hydroxyapatite-coated titanium implants for osseointegration
of osteopenic rats, Mater. Sci. Eng. C, 62 (2016) 226–232.
- R. Jalali, H. Ghafourian, Y. Asef, S.J. Davapanah, S. Sepehr,
Removal and recovery of lead using nonliving biomass of
marine algae, J. Hazard. Mater., 92 (2002) 253–262.
- N. Bektaş, B.A. Ağım, S. Kara, Kinetic and equilibrium studies
in removing lead ions from aqueous solutions by natural
sepiolite, J. Hazard. Mater., 112 (2004) 115–122.
- K. Al-Zboon, M.S. Al-Harahsheh, F.B. Hani, Fly ash-based
geopolymer for Pb removal from aqueous solution, J. Hazard.
Mater., 188 (2011) 414–421.
- T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, S.F. Yang, The
heavy metal adsorption characteristics on metakaolin-based
geopolymer, Appl. Clay Sci., 56 (2012) 90–96.
- F. Fadzil, S. Ibrahim, M.A.K.M. Hanafiah, Adsorption of lead
(II) onto organic acid modified rubber leaf powder: batch
and column studies, Process Saf. Environ., 100 (2016) 1–8.
- X.H. Li, Z. Wang, Q. Li, J.X. Ma, M.Z. Zhu, Preparation,
characterization, and application of mesoporous silica-grafted
graphene oxide for highly selective lead adsorption, Chem.
Eng. J., 273 (2015) 630–637.
- Y. Liu, L. Xu, J. Liu, J.S. Liu, X.Y. Liu, C.H. Chen, G.Y. Li, Y.F.
Meng, Graphene oxides cross-linked with hyperbranched polyethylenimines:
preparation, characterization and their potential
as recyclable and highly efficient adsorption materials for
lead (II) ions, Chem. Eng. J., 285 (2016) 698–708.
- J. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z.W. Zhao, F.Y. Cui,
Highly efficient removal of bivalent heavy metals from aqueous
systems by magnetic porous Fe3O4-MnO2: Adsorption behavior
and process study, Chem. Eng. J., 304 (2016) 737–746.
- M.E. Mahmoud, G.M. Nabil, N.M. El-Mallah, H.I. Bassiouny,
S. Kumar, T.M. Abdel-Fattah, Kinetics, isotherm, and
thermodynamic studies of the adsorption of reactive red 195 A
dye from water by modified Switchgrass Biochar adsorbent, J.
Ind. Eng. Chem., 37 (2016) 156–167.
- T. Suzuki, K. Ishigaki, M. Miyake, Synthetic hydroxyapatites
as inorganic cation exchangers Part 3-Exchange characteristics
of lead ions (Pb2+), J. Chem. Soc., Faraday Trans., 80 (1984)
3157–3165.
- X. Cao, L.Q. Ma, D.R. Rhue, C.S. Appel, Mechanisms of lead,
copper, and zinc retention by phosphate rock, Environ. Pollut.,
131 (2004) 435–444.
- T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C.
Anastasescu, M. Gartner, M. Zaharescu, Hydroxyapatite films
obtained by sol–gel and sputtering, Thin Solid Films, 516 (2008)
8112–8116.
- S. Kačiulis, G. Mattogno, L. Pandolfi, M. Cavalli, G. Gnappi, A.
Montenero, XPS study of apatite-based coatings prepared by
sol–gel technique, Appl. Surf. Sci., 151 (1999) 1–5.
- N. Ohtsu, Y. Nakamura, S. Semboshi, Thin hydroxyapatite
coating on titanium fabricated by chemical coating process
using calcium phosphate slurry, Surf. Coat. Technol., 206 (2012)
2616–2621.