References

  1. V. Ramya, D. Murugan, C. Lajapathirai, P. Saravanan, A. Sivasamy, Removal of toxic pollutants using tannery sludge derived mesoporous activated carbon: experimental and modelling studies, J. Environ. Chem. Eng., 7 (2019) 1–13.
  2. Suharso, Buhani, Biosorption of Pb(II), Cu(II) and Cd(II) from aqueous solution using cassava peel waste biomass, Asian J. Chem., 23 (2011) 1112–1116.
  3. N.L. Nemerrow, Liquid Waste of Industry, Addison Wesley Publishing Company, California, 1971.
  4. S.A. Snyder, Emerging chemical contaminants: Looking for better harmony, J. AWWA, 106 (2014) 38–52.
  5. M.S. Tsuboy, J.P. Angeli, M.S. Mantovani, S. Knasmüller, G.A. Umbuzeiro, L.R. Ribeiro, Gentoxic, mutagenic and cytotoxic effects of the commercial dye CI disperse blue 291 in the human hepatic cell line HepG2. Toxicol. in Vitro, 21 (2007) 1650–1655.
  6. S. Vinitnantharat, W. Chartthe, A. Pinisakul, Toxicity of reactive dye 141 and basic red 14 to algae and water fleas, Water Sci. Technol., 58 (2008) 1193–1198.
  7. S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree, J. Hazard. Mater., B136 (2006) 800–808.
  8. S. Kaur, S. Rani, R.K. Mahajan, Adsorptive removal of dye crystal violet onto low-cost carbon produced from Eichhornia plant: kinetic, equilibrium, and thermodynamic studies, Desal. Wat. Treat., 53 (2015) 543–556.
  9. M. Sharma, K. Anubha, C.P. Kaushik, Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model, Int. Biodeterior. Biodegrad., 65 (2011) 513–521.
  10. C.S. Umpierres, L.D.T. Prola, M.A. Adebayo, E.C. Lima, G.S. dos Reis, D.D.F. Kunzler, G.L. Dotto, L.T. Arenas, E.V. Benvenutti, Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye, Environ. Technol., 38 (2017) 566–578.
  11. V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation, Appl. Catal. B Environ., 170–171 (2015) 153–161.
  12. G.C. Collazzo, D.S. Paz, S.L. Jahn, N.L.V. Carreño, E.L. Foletto, Evaluation of niobium oxide doped with metals in photocatalytic degradation of leather dye, Latin Am. Appl. Res., 42 (2012) 51–54.
  13. T. Saitoh, M. Saitoh, C. Hattori, M. Hiraide, Rapid removal of cationic dyes from water by co precipitation with aluminum hydroxide and sodium dodecyl sulfate, J. Environ. Chem. Eng., 2 (2014) 752–758.
  14. K. Saeed, M. Ishaq, S. Sultan, I. Ahmad, Removal of methyl violet 2-B from aqueous solutions using untreated and magnetite-impregnated almond shell as adsorbents, Desal. Wat. Treat., 57 (2016) 13484–13493.
  15. Buhani, F. Hariyanti, Suharso, Rinawati, Sumadi, Magnetized algae-silica hybrid from Porphyridium sp. biomass with Fe3O4 particle and its application as adsorbent for the removal of methylene blue from aqueous solution, Desal. Wat. Treat., 142 (2019) 331–340.
  16. J.S. Wu, C.H. Liu, K.H. Chu, S.Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Membr. Sci., 309 (2008) 239–245.
  17. C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes performance analysis with costs reduction, J. Environ. Chem. Eng., 2 (2014) 1027–1039.
  18. T. Pankaj, P.A. Joy, Superparamagnetic nanocomposite of magnetite and activated carbon for removal of dyes from waste water, Nanosci. Nanotechnol. Lett., 1 (2009) 171–175.
  19. I. Ali, M. Asim, T.A. Khan, Low-cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  20. Buhani, Narsito, Nuryono, E.S. Kunarti, Suharso, Adsorption competition of Cu(II) ion in ionic pair and multi-metal solution by ionic imprinted amino-silica hybrid adsorbent, Desal. Wat. Treat., 55 (2015) 1240–1252.
  21. H. Chaudhuri, S. Dash, S. Ghorai, S. Pal, A. Sarkar, SBA-16: Application for the removal of neutral, cationic, and anionic dyes from aqueous medium, J. Environ. Chem. Eng., 4 (2016) 157–166.
  22. T. Calvete, E.C. Lima, N.F. Cardoso, S.L.P. Dias, E.S. Ribeiro, Removal of brilliant green dye from aqueous solutions using home made activated carbons, Clean Air Soil Water., 38 (2010) 521–532.
  23. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  24. O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous Mesoporous Mater., 210 (2015) 176–184.
  25. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
  26. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Comp., 687 (2016) 370–383.
  27. Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod., 86 (2015) 424–431.
  28. N. Singh, C. Balomajumder, Simultaneous removal of phenol and cyanide from aqueous solution by adsorption onto surface modified activated carbon prepared from coconut shell, J. Water Process. Eng., 9 (2016) 233–245.
  29. Z. Gong, S. Li, J. Ma, X. Zhang, Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol a removal, Sep. Purif. Technol., 157 (2016) 131–140.
  30. Y.L. Kang, S.T. Khoon, P. Monash, S. Ibrahim, P. Saravanan, Adsorption isotherm, kinetic and thermodynamic studies of activated carbon prepared from Garcinia mangostana shell, Asia- Pacific J. Chem. Eng., 8 (2013) 811–818.
  31. N. Ozbay, A.S. Yargic, Factorial experimental design for Remazol Yellow dye sorption using apple pulp/apple pulp carbon–titanium dioxide co-sorbent, J. Clean. Prod., 100 (2015) 333–343.
  32. H. Sayğılı, F. Güzel, Y. Önal, Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption, J. Clean. Prod., 93 (2015) 84–93.
  33. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan- Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  34. S.H. Araghi, M.H. Entezari, Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution, Appl. Surf. Sci., 333 (2015) 68–77.
  35. M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, A. Amir, Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent, J Saudi Chem. Soc., 21 (2017) 143–151.
  36. K.T. Wong, Y. Yoon, S.A. Snyder, M. Jang, Phenyl-functionalized magnetic palm-based powdered activated carbon for the effective removal of selected pharmaceutical and endocrinedisruptive compounds, Chemosphere, 152 (2016) 71–80.
  37. T.S. Anirudhan, F. Shainy, Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium(II) from aqueous solutions, J. Ind. Eng. Chem., 32 (2015) 157–166.
  38. I. Mohmood, C.B. Lopes, I. Lopes, D.S. Tavares, A.M. Soares, A.C. Duarte, T. Trindade, I. Ahmad, E. Pereira, Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles, Sci. Total Environ., 557–558 (2016) 712–721.
  39. Q. Zhang, T. Lu, D.M. Bai, D.Q. Lin, S.J. Yao, Self-immobilization of a magnetic biosorbent and magnetic induction heated dye adsorption processes, Chem. Eng. J., 284 (2016) 972–979.
  40. Buhani, Rinawati, Suharso, D.P. Yuliasari, S.D. Yuwono, Removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solution using Tetraselmis sp. biomass modified with silica-coated magnetite nanoparticle, Desal. Wat. Treat., 80 (2017) 203–213.
  41. L. Qimeng, Q. Yanshan, G. Canzhu, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod., 86 (2015) 424–431.
  42. Buhani, M. Puspitarini, Rahmawaty, Suharso, M. Rilyanti, Sumadi, Adsorption of phenol and methylene blue in solution by oil palm shell activated carbon prepared by chemical activation, Orient. J. Chem., 34 (2018) 2043–2050.
  43. C. Desbrow, E. Routledge, G. Brighty, J. Sumpter, M. Waldock, Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening, Environ. Sci. Technol., 32 (1998) 1549–1558.
  44. H.P.S. Abdul Khalil, M. Jawaid, P. Firoozian, U. Rashid, A. Islam, H. Akil, Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization, J. Biobased Mater. Bioenergy, 7 (2013) 1–7.
  45. Y.D. Liang, Y.J. He, T.T. Wang, L.H. Lei, Adsorptive removal of gentian violet from aqueous solution using CoFe2O4/activated carbon magnetic composite, J. Water. Process Eng., 27 (2019) 77–88.
  46. D.W. Cho, J. Lee, Y.S. Ok, E.E. Kwon, H. Song, Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar, Chemosphere, 163 (2016) 305–312.
  47. R. Hoppe, G. Alberti, U. Costantino, C. Dionigi, G.N. Schulz- Ekloff, R. Vivani, Intercalation of dyes in layered zirconium phosphates. 1. Preparation and spectroscopic characterization of α-zirconium phosphate crystal violet compounds, Langmuir, 13 (1997) 7252–7257.
  48. S. Chakraborty, S. Chowdury, P.D. Saha, Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 86 (2011) 1533–1541.
  49. A.H. AbdEl-Salam, H.A. Ewais, A.S. Basaleh, Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study, J. Mol. Liq., 248 (2017) 833–841.
  50. P. Sun, C. Hui, R.A. Khan, X. Guo, S. Yang, Y. Zhao, Mechanistic links between magnetic nanoparticles and recovery potential and enhanced capacity for crystal violet of nanoparticles-coated kaolin, J. Clean. Prod., 164 (2017) 695–702.
  51. S. Chowdhury, S. Chakraborty, P. Das, Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: equilibrium, kinetics, and thermodynamics, Sep. Purif. Technol., 48 (2013) 1339–1348.
  52. H.J. Kumari, P. Krishnamoorthy, T.K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/chitosan composite: a novel low cost adsorbent, Int. J. Biol. Macromol., 96 (2016) 324–333.
  53. N. Atar, A. Olgun, S. Wang, Adsorption of cadmium(II) and zinc(II) on boron enrichment process waste in aqueous solutions: Batch and fixed-bed system studies, Chem. Eng. J., 192 (2012) 1–7.
  54. R. Noroozi, T.J. Al-Musawi, H. Kazemian, M. Zarrabi, Removal of cyanide using surface-modified Linde Type-A zeolite nanoparticles as an efficient and eco-friendly material; J. Water Process Eng., 21 (2018) 44–51.
  55. E. Vaiopoulou, P. Gikas, Effects of chromium on activated sludge and on the performance of wastewater treatment plants, Water Res., 46 (2012) 549–570.
  56. Buhani, Suharso, H. Satria, Hybridization of Nannochloropsis sp. biomass-silica through sol-gel process to adsorb Cd(II) ion in aqueous solutions, Eur. J. Sci. Res., 51 (2011) 467–476.
  57. A.M. Aljeboree, A.F. Alkaim, A.H. Al-Dujaili, Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon, Desal. Wat. Treat., 53 (2015) 3656–3667.
  58. J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng., 4 (2016) 266–275.
  59. L.L. Embrick, K.M. Porter, A. Pendergrass, D.J. Butcher, Characterization of lead and arsenic contamination at Barber Orchard, Haywood County, NC, Microchem. J., 81 (2005) 117–121.
  60. K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, J. Hazard. Mater., 186 (2011) 1462–1473.
  61. N.A. Oladoja, A.K. Akinlabi, Congo red biosorption on palm kernel seed coat, Ind. Eng. Chem. Res., 48 (2009) 6188–6196.
  62. O. Duman, C. Özcan, T. Gürkan Polat, S. Tunç, Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites, Environ. Pollut., 244 (2019) 723–732.
  63. Buhani, Suharso, A.Y. Fitriyani, Comparative study of adsorption ability of Ni(II) and Zn(II) ionic imprinted aminosilica hybrid toward target metal in solution, Asian J. Chem., 25 (2013) 2875–2880.
  64. D. Mitrogiannis, G. Markou, A. Çelekli, H. Bozkurt, Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies, J. Environ. Chem. Eng., 3 (2015) 670–680.
  65. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184 (2012) 132–140.
  66. I. Larraza, M. Lŏpez-Gŏnzales, T. Corrales, G. Marcelo. Hybrid materials: magnetite-ployethyenimine-montromolillonite, as magnetic adsorbents for Cr (VI) water treatment, J. Colloid Interface Sci., 385 (2012) 24–33.
  67. Y. Shao, L. Zhou, C. Bao, J. Ma, M. Liu, F. Wang, Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue, Chem. Eng. J., 283 (2016) 1127–1136.
  68. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel, and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  69. S. Hamidzadeh, M. Torabbeigi, S.J. Shahtaheri, Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide, J. Environ. Health Sci. Eng., 13 (2015) 1–7.
  70. E. Ayranci, O. Duman, Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, J. Hazard. Mater., 148 (2007) 75–82.
  71. E. Ayranci, O. Duman, Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification, J. Hazard. Mater., 136 (2006) 542–552.
  72. K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Chem. Res., 45 (2006) 5165–5171.
  73. M.A. Shouman, W.E. Rashwan, Studies on adsorption of basic dyes on activated carbon derived from Phragmites australis (Common Reed), Univers, J. Environ. Res. Technol., 2 (2012) 119–134.
  74. Y. Onal, Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot, J. Hazard. Mater., 137 (2006) 1719–1728.
  75. Buhani, Suharso, L. Aprilia, Chemical stability and adsorption selectivity on Cd2+ ionic imprinted Nannochloropsis sp. material with silica matrix from tetraethyl orthosilicate, Indo. J. Chem., 12 (2012) 94–99.