References

  1. S.R. Pouran, A.R.A. Aziz, W.M.A.W. Daud, Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters, J. Ind. Eng. Chem., 21 (2015) 53–69.
  2. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process. Process Intensif.,109 (2016) 178–189.
  3. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  4. A.D. Bokare, W.Y. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  5. D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ. Pollut., 163 (2012) 287–303.
  6. N. Ratola, A. Cincinelli, A. Alves, A. Katsoyiannis, Occurrence of organic microcontaminants in the wastewater treatment process. A mini review, J. Hazard. Mater., 239–240 (2012) 1–18.
  7. V.L. Tyagi, S.-L. Lo, Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review, Rev. Environ. Sci. Biotechnol., 10 (2011) 215–242.
  8. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  9. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  10. S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149 (2007) 631–642.
  11. A.M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys, Nonthermal plasmas for non-catalytic and catalytic VOC abatement, J. Hazard. Mater., 195 (2011) 30–54.
  12. S. Garcia-Segura, L.M. Bellotindos, Y.-H. Huang, E. Brillas, M.-C. Lu, Fluidized-bed Fenton process as alternative wastewater treatment technology—a review, J. Taiwan Inst. Chem. Eng., 67 (2016) 211–225.
  13. M. Kurian, D.S. Nair, Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions, J. Water Process Eng., 8 (2015) 37–49.
  14. A. Cihanoğlu, G. Gündüz, M. Dükkancı, Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites, Appl. Catal., B, 165 (2015) 687–699.
  15. N.A. Youssef, S.A. Shaban, F.A. Ibrahim, A.S. Mahmoud, Degradation of methyl orange using Fenton catalytic reaction, Egypt. J. Pet., 25 (2016) 317.
  16. P.H. Sreeja, K.J. Sosamony, A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment, Procedia Technol., 24 (2016) 217.
  17. W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fentonlike systems, Environ. Sci. Technol., 37 (2003) 1150–1158.
  18. H. Hassan, B.H. Hameed, Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171 (2011) 912–918.
  19. A. Khataee, P. Gholami, B. Vahid, Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation, J. Ind. Eng. Chem., 50 (2017) 86–95.
  20. Y.P. Zhang, K.T. Dong, Z. Liu, H.L. Wang, S.X. Ma, A. Zhang, M. Li, L.Q. Yu, Y. Li, Sulfurized hematite for photo-Fenton catalysis, Prog. Nat. Sci. Mater. Int., 27 (2017) 443–451.
  21. L. Labiadh, M.A. Oturan, M. Panizza, N.B. Hamadi, S. Ammar, Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst, J. Hazard. Mater., 297 (2015) 34–41.
  22. C. Kantar, O. Oral, O. Urken, N.A. Oz, S. Keskin, Oxidative degradation of chlorophenolic compounds with pyrite-Fenton process, Environ. Pollut., 247 (2019) 349–361.
  23. L.Y. Zeng, J.Y. Gong, J.F. Dan, S. Li, J.D. Zhang, W.H. Pu, C.Z. Yang, Novel visible light enhanced pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: catalytic activity, characterization and mechanism, Chemosphere, 228 (2019) 232–240.
  24. C. Kantar, O. Oral, O. Urken, N.A. Oz, Role of complexing agents on oxidative degradation of chlorophenolic compounds by pyrite-Fenton process: batch and column experiments, J. Hazard. Mater., 373 (2019) 160–167.
  25. O. Oral, C. Kantar, Diclofenac removal by pyrite-Fenton process: performance in batch and fixed-bed continuous flow systems, Sci. Total Environ., 664 (2019) 817–823.
  26. A.L. Larralde, D. Onna, K.M. Fuentes, E.E. Sileo, M. Hojamberdiev, S.A. Bilmes, Heterogeneous photo-Fenton process mediated by Sn-substituted goethites with altered OH-surface density, J. Photochem. Photobiol., A, 381 (2019) 111856.
  27. Y. Wang, Y.W. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today, 252 (2015) 107–112.
  28. Z.-R. Lin, X.-H. Ma, L. Zhao, Y.-H. Dong, Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction, Chemosphere, 101 (2014) 15–20.
  29. T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation, J. Environ. Manage., 233 (2019) 471–480.
  30. T.X.H. Le, M. Drobek, M. Bechelany, J. Motuzas, A. Julbe, M. Cretin, Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement, Microporous Mesoporous Mater., 278 (2019) 64–69.
  31. D.S. Bhatkhande, V.G. Pangarkar, A. ACM Beenackers, Photocatalytic degradation for environmental applications - a review, J. Chem. Technol. Biotechnol., 77 (2001) 102.
  32. M.C. Vagi, A.S. Petsas, Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: an overview (2007–2018), J. Environ. Chem. Eng., (2019), https://doi.org/10.1016/j.jece.2019.102940, (in press).
  33. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  34. A. Temirel, S. Palamutçu, Functional textiles III: self-cleaning with photocatalytic effect on textile surfaces, E-J. Text. Technol., 5 (2011) 35–50.
  35. M.A. Gondal, A. Hameed, Z.H. Yamani, A. Arfaj, Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts, Chem. Phys. Lett., 392 (2004) 372–377.
  36. G.R. Bamwenda, H. Arakawa, The visible light induced photocatalytic activity of tungsten trioxide powders, Appl. Catal., A, 210 (2001) 181–191.
  37. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art, Water Air Soil Pollut., 205 (2010) 187–204.
  38. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  39. A. Darjan, C. Draghici, D. Perniu, A. Duta, Degradation of Pesticides by TiO2 Photocatalysis, Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe, Part of the Series NATO Science for Peace and Security Series C: Environmental Security, Chapter 14, 2013, pp. 155–163.
  40. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  41. J. Fenoll, P. Hellín, C.M. Martínez, P. Flores, S. Navarro, Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO2 and ZnO as catalyst under natural sunlight, J. Photochem. Photobiol., A, 238 (2012) 81–87.
  42. M.M. Ba-Abbad, M.S. Takriff, M. Said, A. Benamor, M.S. Nasser, A.W. Mohammad, Photocatalytic degradation of pentachlorophenol using ZnO nanoparticles: study of intermediates and toxicity, Int. J. Environ. Res., 11 (2017) 461–473.
  43. Y.-H. Wang, Z. Zhou, Q.-Y. Chen, J.-L. Zhao, Electrochemical Treatment of Pentachlorophenol on Ni-Sb-SnO2/Ti Electrodes, International Symposium on Water Resource and Environmental Protection, 2 (2011) 1379–1381.
  44. J.F. Niu, Y.P. Bao, Y. Li, Z. Chai, Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes, Chemosphere, 92 (2013) 1571–1577.
  45. V.G.G. Kanmoni, S. Daniel, G.A.G. Raj, Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2, React. Kinet. Catal. Lett., 106 (2012) 325–339.
  46. G.C. Pathiraja, M.S. Wijesingha, N. Nanayakkara, Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation Performances, IOP Conf. Ser.: Mater. Sci. Eng., 201 (2017) 012040.
  47. A. Eslami, M. Hashemi, F. Ghanbari, Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment, J. Cleaner Prod., 195 (2018) 1389–1397.
  48. Y. He, D.B. Jiang, D.Y. Jiang, J. Chen, Y.X. Zhang, Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system, J. Hazard. Mater., 344 (2018) 230–240.
  49. W.X. Zhang, Z.H. Yang, X. Wang, Y.C. Zhang, X.G. Wen, S.H. Yang, Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye, Catal. Commun., 7 (2006) 408–412.
  50. N. Sui, Y.Z. Duan, X.L. Jiao, D.R. Chen, Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures, J. Phys. Chem. C, 113 (2009) 8560–8565.
  51. J. Howsawkeng, A.L. Teel, T.F. Hess, R.L. Crawford, R.J. Watts, Simultaneous abiotic reduction–biotic oxidation in a microbial-MnO2-catalyzed Fenton-like system, Sci. Total Environ., 409 (2010) 439–445.
  52. A.L.-T. Pham, F.M. Doyle, D.L. Sedlak, Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation, Environ. Sci. Technol., 46 (2012) 1055–1062.
  53. G.S. Cao, L. Su, X.J. Zhang, H. Li, Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods, Mater. Res. Bull., 45 (2010) 425–428.
  54. N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, W.S. Mohamed, Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2, J. Environ. Chem. Eng., 1 (2013) 858–864.
  55. O. Furman, D.F. Laine, A. Blumenfeld, A.L. Teel, K. Shimizu, I.F. Cheng, R.J. Watts, Enhanced reactivity of superoxide in watersolid matrices, Environ. Sci. Technol., 43 (2009) 1528–1533.
  56. F.R. Spellman, Water and Wastewater Treatment Plant Operations, CRS Press, Taylor & Francis Group, Boca Raton, Florida, 2014, 851 p.
  57. A. Tan, Some Pollution in Wastewater Examination of Parameters, Master’s Thesis, Trakya University, Turkey, 2006.
  58. I. Ozturk, H. Timur, U. Koşkan, Domestic, Industrial Wastewater Treatment and Control of Sewage Sludge, Principles of Wastewater Treatment, Turkey, 2005.
  59. H.F. David, B.G. Liptak, P.A. Bouis, Groundwater and Surface Water Pollution, CRC Press, Lewis Publisher, Boca Raton, Florida, 2000.
  60. F.I. Hai, K. Yamamoto, K. Fukushi, Hybrid treatment systems for dye wastewater, Crit. Rev. Env. Sci. Technol., 37 (2007) 315–377.
  61. S. Aslan, B. Alyüz, Z. Bozkurt, M. Bakaoğlu, Characterization and biological treatability of edible oil wastewaters, Pol. J. Environ. Stud., 18 (2009) 533–538.
  62. K. Vijayaraghavan, D. Ahmad, M.E.B.A. Aziz, Aerobic treatment of palm oil mill effluent, J. Environ. Manage., 82 (2007) 24–31.
  63. Y. Saatci, E.I. Arslan, V. Konar, Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor, Bioresour. Technol., 87 (2003) 269–272.
  64. N. Azbar, T. Yonar, Comparative evaluation of a laboratory and full-scale treatment alternatives for the vegetable oil refining industry wastewater (VORW), Process Biochem., 39 (2004) 869–875.
  65. Y.O. Fouad, Separation of cottonseed oil from oil–water emulsions using electrocoagulation technique, Alexandria Eng. J., 53 (2014) 199–204.
  66. U.T. Un, A.S. Koparal, U.B. Ogutveren, Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes, J. Environ. Manage., 90 (2009) 428–433.
  67. M. Cheryan, N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction, J. Membr. Sci., 151 (1998) 13–28.
  68. F.L. Hua, Y.F. Tsang, Y.J. Wang, S.Y. Chan, H. Chua, S.N. Sin, Performance study of ceramic microfiltration membrane for oily wastewater treatment, Chem. Eng. J., 128 (2007) 169–175.
  69. T. Mohammadi, A. Esmaeelifar, Wastewater treatment using ultrafiltration at a vegetable oil factory, Desalination, 166 (2004) 329–337.
  70. T. Mohammadi, A. Esmaeelifar, Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration-activated carbon process, J. Membr. Sci., 254 (2005) 129–137.
  71. M. Decloux, M.-L. Lameloise, A. Brocard, E. Bisson, M. Parmentier, A. Spiraers, Treatment of acidic wastewater arising from the refining of vegetable oil by crossflow microfiltration at very low transmembrane pressure, Process Biochem., 42 (2007) 693–699.
  72. H. Moazed, T. Viraraghavan, Removal of oil from water by bentonite organoclay. Pract. Period. Hazard. Toxic Radioact. Waste Manage., 9 (2005) 130–134.
  73. M.G. Devi, Z.S.S. Al-Hashmi, G.C. Sekhar, Treatment of vegetable oil mill effluent using crab shell chitosan as adsorbent, Int. J. Environ. Sci. Technol., 9 (2012) 713–718.
  74. D. Mysore, T. Viraraghavan, Y.-C. Jin, Treatment of oily waters using vermiculite, Water Res., 39 (2005) 2643–2653.
  75. Y. Asci, M. Cam, Treatment of synthetic dye wastewater by using Fe/CuO particles prepared by co-precipitation: parametric and kinetic studies, Desal. Wat. Treat., 73 (2017) 281–288.
  76. N.-Y. He, J.-M. Cao, S.-L. Bao, Q.-H. Xu, Room-temperature synthesis of an Fe-containing mesoporous molecular sieve, Mater. Lett., 31 (1997) 133–136.
  77. A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater., 77 (2005) 1–45.
  78. E.F. Yüksel, Examination of Microporous Solids, M.Sc. Thesis Ankara University, Turkey, 2005, 73 p.
  79. A. Khataee, S. Fathinia, M. Fathinia, Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine, Ultrason. Sonochem., 34 (2017) 904–915.
  80. J.J. Zhang, X.H. Zhang, Y.F. Wang, Degradation of phenol by a heterogeneous photo-Fenton process using Fe/Cu/Al catalysts, RSC Adv., 6 (2016) 13168–13176.
  81. A. Khataee, P. Gholami, M. Sheydaei, Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification, J. Taiwan Inst. Chem. Eng., 58 (2016) 366–373.
  82. L.J. Xu, J.L. Wang, Magnetic Nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol, Environ. Sci. Technol., 46 (2012) 10145–10153.
  83. B.X. Zhao, X. Li, W. Li, L. Yang, J.C. Li, W.X. Xia, L. Zhou, F. Wang, C. Zhao, Degradation of trichloroacetic acid by an efficient Fenton/UV/TiO2 hybrid process and investigation of synergetic effect, Chem. Eng. J., 273 (2015) 527–533.
  84. B. Muthukumari, K. Selvam, I. Muthuvel, M. Swaminathan, Photoassisted hetero-Fenton mineralisation of azo dyes by Fe(II)-Al2O3 catalyst, Chem. Eng. J., 153 (2009) 9–15.
  85. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
  86. F. Ji, C.L. Li, J.H. Zhang, L. Deng, Efficient decolorization of dye pollutants with LiFe(WO4)2 as a reusable heterogeneous Fenton-like catalyst, Desalination, 269 (2011) 284–290.
  87. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  88. F. Martínez, G. Calleja, J.A. Melero, R. Molina, Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst, Appl. Catal., B, 60 (2005) 181–190.
  89. M.A. Zazouli, F. Ghanbari, M. Yousefi, S. Madihi-Bidgoli, Photocatalytic degradation of food dye by Fe3O4–TiO2 nanoparticles in presence of peroxymonosulfate: the effect of UV sources, J. Environ. Chem. Eng., 5 (2017) 2459–2468.
  90. M. Ahmadi, F. Ghanbari, Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater, Environ. Sci. Pollut. Res., 25 (2018) 6003–6014.
  91. N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electro-oxidation assisted peroxymonosulfate for decolorization of acid brown 14 from aqueous solution, Korean J. Chem. Eng., 32 (2015) 458–464.
  92. N.K. Daud, B.H. Hameed, Fenton-like oxidation of reactive black 5 solution using iron–Montmorillonite K10 catalyst, J. Hazard. Mater., 176 (2010) 1118–1121.
  93. A.A. Babaei, B. Kakavandi, M. Rafiee, F. Kalantarhormizi, I. Purkaram, E. Ahmadi, S. Esmaeili, Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C), J. Ind. Eng. Chem., 56 (2017) 163–174.
  94. L.S. Luo, Y.Y. Yao, F. Gong, Z.F. Huang, W.Y. Lu, W.X. Chen, L. Zhang, Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine, RSC Adv., 6 (2016) 47661–47668.
  95. L.J. Xu, J.L. Wang, Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles, Appl. Catal., B, 123–124 (2012) 117–126.
  96. G.M.S. ElShafei, F.Z. Yehia, O.I.H. Dimitry, A.M. Badawi, Gh. Eshaq, Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification, Chemosphere, 139 (2015) 632–637.
  97. Y. Wu, S.L. Zeng, F.F. Wang, M. Megharaj, R. Naidu, Z.L. Chen, Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst, Sep. Purif. Technol., 154 (2015) 161–167.
  98. Y. Liu, D. Sun, Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes, J. Hazard. Mater., 143 (2006) 448–454.
  99. C.P. Bai, W.Q. Gong, D.X. Feng, M. Xian, Q. Zhou, S.H. Chen, Z.X. Ge, Y.H. Zhou, Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B, Chem. Eng. J., 197 (2012) 306–313.
  100. L.F. Guerreiro, C.S.D. Rodrigues, R.M. Duda, R.A. de Oliveira, R.A.R. Boaventura, L.M. Madeira, Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation, J. Environ. Manage., 181 (2016) 237–248.
  101. M. Karatas, Y.A. Argun, M.E. Argun, Decolorization of antraquinonic dye, Reactive Blue 114 from synthetic wastewater by Fenton process: kinetics and thermodynamics, J. Ind. Eng. Chem., 18 (2012) 1058–1062.
  102. B. Yang, Z. Tian, L. Zhang, Y.P. Guo, S.Q. Yan, Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, J. Water Process Eng., 5 (2015) 101–111.
  103. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, J. Photochem. Photobiol., A, 314 (2016) 178–188.
  104. C. Lopez-Lopez, J. Martín-Pascual, M.V. Martínez-Toledo, M.M. Muñío, E. Hontoria, J.M. Poyatos, Kinetic modelling of TOC removal by H2O2/UV, photo-Fenton and heterogeneous photocatalysis processes to treat dye-containing wastewater, Int. J. Environ. Sci. Technol., 12 (2015) 3255–3262.