References
- Q. Zheng, D.P. Durkin, J.E. Elenewski, Y. Sun, N.A. Banek,
L. Hua, H. Chen, M.J. Wagner, W. Zhang, D. Shuai, Visible light-responsive graphitic carbon nitride: rational design and
photocatalytic applications for water treatment, Environ. Sci.
Technol., 50 (2016) 12938–12948.
- P. Singh, B. Priya, P. Shandilya, P. Raizada, N. Singh, B. Pare,
S.B. Jonnalagadda. Photocatalytic mineralization of antibiotics
using 60% WO3/BiOCl stacked to graphene sand composite
and chitosan, Arab. J. Chem., (2016), (in press), https://doi.org/10.1016/j.arabjc.2016.08.005.
- A. Fujishima, K. Honda, Electrochemical photolysis of water at
a semiconductor electrode, Nature, 238 (1972) 37.
- H. Cao, Y. Zhu, X. Tan, H. Kang, X. Yang, C. Li, Fabrication
of TiO2/CdS composite fiber via an electrospinning method,
New J. Chem., 34 (2010) 1116–1119.
- S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite
photocatalyst of g-C3N4 and TaON with improved visible light
photocatalytic activities, Dalton Trans., 39 (2010) 1488–1491.
- V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh,
S.B. Jonnalagadda, V.K. Thakur, Recent advances in noble
metal free doped graphitic carbon nitride based nanohybrids
for photocatalysis of organic contaminants in water: a review,
Appl. Mater. Today, 15 (2019) 494–524.
- A. Habibi-Yangjeh, M. Mousavi, Deposition of CuWO4 nanoparticles
over g-C3N4/Fe3O4 nanocomposite: novel magnetic
photocatalysts with drastically enhanced performance under
visible-light, Adv. Powder Technol., 29 (2018) 1379–1392.
- S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A.
Hosseini-Bandegharaei, V. Kumar Thakur, Carbon quantum
dot supported semiconductor photocatalysts for efficient
degradation of organic pollutants in water: a review, J. Clean.
Prod., 228 (2019) 755–769.
- P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A.K. Saini, P. Singh, Fabrication of fluorine
doped graphene and SmVO4 based dispersed and adsorptive
photocatalyst for abatement of phenolic compounds from water
and bacterial disinfection, J. Clean. Prod., 203 (2018) 386–399.
- W.T. Dong, C.S. Zhu, Optical properties of surface-modified
BO nanoparticles, J. Phys. Chem. Solids, 64 (2003) 265–271.
- B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional
photocatalytic mineralization of oxytetracycline and ampicillin
antibiotics using BO/BiOCl supported on graphene sand composite
and chitosan, J. Colloid Interface Sci., 479 (2016) 271–283.
- P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, V.K. Gupta,
A.H. Bandegharaei, S. Agrawal, Ag3PO4 modified phosphorus
and sulphur co-doped graphitic carbon nitride as a direct
Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation,
J. Photochem. Photobiol. A: Chem., 374 (2019) 22–35.
- R. Chen, Z.R. Shen, H. Wang, H.J. Zhou, Y.P. Liu, D.T. Ding, T.H.
Chen, Fabrication of mesh-like bismuth oxide single crystalline
nanoflakes and their visible light photocatalytic activity, J.
Alloys Comp., 9 (2011) 2588–2596.
- S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photocatalytic
degradation of methyl orange using α-BO prepared without
surfactant, J. Alloys Comp., 563 (2013) 104–107.
- K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, P. Singh, Recent advances in enhanced
photocatalytic activity of bismuth oxyhalides for efficient
photocatalysis of organic pollutants in water: a review, J. Ind.
Eng. Chem., 78 (2019) 1–20.
- M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, From
hollow olive-shaped BiVO4 to n-p Core-Shell BiVO4@ BO
microspheres: controlled synthesis and enhanced visible-light responsive
photocatalytic properties, Inorg. Chem., 50 (2010)
800–805.
- J. Zhu, S. Wang, J. Wang, D. Zhang, H. Li, Highly active and
durable BO/TiO2 visible photocatalyst in flower-like spheres
with surface-enriched BO quantum dots, Appl. Catal., B, 102
(2011) 120–125.
- A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim,
P. Singh, Review on fabrication of graphitic carbon nitride based
efficient nanocomposites for photodegradation of aqueous
phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M.
Carlsson, K. Domen, M. Antonietti, A metal-free polymeric
photocatalyst for hydrogen production from water under
visible light, Nat. Mater., 8 (2009) 76–80.
- S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh,
Graphitic carbon nitride nanosheets coupled with carbon
dots and BiOI nanoparticles: boosting visible-light-driven
photocatalytic activity, J. Taiwan Inst. Chem. Eng., 87 (2018)
98–111.
- S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi,
Decoration of carbon dots and AgCl over g-C3N4 nanosheets:
novel photocatalysts with substantially improved activity
under visible light, Sep. Purif. Technol., 199 (2018) 64–77.
- Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ran,
J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced
photocatalytic activity for H2 evolution and Rhodamine B
degradation under visible light, J. Mater. Chem. A, 3 (2015)
3862–3867.
- S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata,
Decoration of carbon dots over hydrogen peroxide treated
graphitic carbon nitride: exceptional photocatalytic
performance in removal of different contaminants under visible
light, J. Photochem. Photobiol. A: Chem., 374 (2019) 161–172.
- P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, A.K. Saini, V.K.
Gupta, J.H. Lim, H. Jung, A.H. Bandegharaei, Fabrication of
Ag3VO4 decorated phosphorus and sulphur co-doped graphitic
carbon nitride as a high-dispersed photocatalyst for phenol
mineralization and E. coli disinfection, Sep. Purif. Technol., 212
(2019) 887–900.
- P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada,
A.K. Saini, P. Singh, GdVO4 modified fluorine doped graphene
nanosheets as dispersed photocatalyst for mitigation of phenolic
compounds in aqueous environment and bacterial disinfection,
Sep. Purif. Technol,. 210 (2019) 804–816.
- B. Pare, P. Singh, S.B. Jonnalagadda, Degradation and mineralization
of victoria blue B dye in a slurry photoreactor using
advanced oxidation process, J. Sci. Ind. Res., 68 (2009) 724–729.
- B. Pare, P. Singh, S.B. Jonnalagadda, Visible light induced
heterogeneous advanced oxidation process to degrade pararosanilin
dye in aqueous suspension of ZnO, Ind. J. Chem. Sect.
A, 47 (2008) 830–835.
- P. Raizada, A. Sudhaik, P. Singh, A. Hosseini-Bandegharaei,
P. Thakur, Converting type II AgBr/VO into ternary Z scheme
photocatalyst via coupling with phosphorus doped g-C3N4
for enhanced photocatalytic activity, Sep. Purif. Technol., 227
(2019) 115692.
- C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties
BiOCl and BO nanofibers prepared by electrospinning, Scripta
Mater., 59 (2008) 332–335.
- Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao,
H. Li, GCN modified BO composites with enhanced visiblelight
photocatalytic activity, J. Phys. Chem. Solid, 76 (2015)
112–119.
- Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Conga, Q. Wang,
H. Jin, Synthesis of GCN/BO/TiO2 composite nanotubes:
Enhanced activity under visible light irradiation and improved
photoelectrochemical activity, RSC Adv., 5 (2015) 48983–48991.
- L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai,
Visible-light-induced WO3/GCN composites with enhanced
photocatalytic activity, Dalton Trans., 42 (2013) 8606–8616.
- T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.C. Lux-Steiner,
T. Schedel-Niedrig, Tunable optical transition in
polymeric carbon nitrides synthesized via bulk thermal condensation,
J. Phys.: Condens. Matter, 24 (2012) 162201.
- J. Zhang, Y. Li, P. Zhu, D. Huang, S. Wu, Q. Cui, G. Zou,
Graphitic carbon nitride materials synthesized via reactive
pyrolysis routes and their properties, Diam. Relat. Mater.,
20 (2011) 385–388.
- A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray
diffraction data for the new polymorphic compound ω-BO,
Powder Diffr., 12 (1997) 90–92.
- O. Pawar, N. Deshpande, S. Dagade, S. Waghmode, P.N. Joshi,
Green synthesis of silver nanoparticles from purple acid
phosphatase apoenzyme isolated from a new source, Limonia
acidissima, J. Exp. Nanosci., 11 (2015) 28–37.
- H. Katsumata, Y. Tachi, T. Suzuki, S. Kaeco, Z-scheme
photocatalytic hydrogen production over WO3/g-C3N4 composite
photocatalysts, RSC Adv., 4 (2014) 21405–21409.
- S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker,
Synthesis of magnetically separable and recyclable g-C3N4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic
performance under visible-light irradiation, J. Phys. Chem. C,
117 (2013) 26135–26143.
- Q. Zhuang, L. Sun, Y. Ni, One-step synthesis of graphitic
carbon nitride nanosheets with the help of melamine and its
application for fluorescence detection of mercuric ions, Talanta,
164 (2017) 458–462.
- R. Irmawati, M.N.N. Nasriah, Y.H. Taufig-Yap, S.B.A. Hamid,
Characterization of bismuth oxide catalysts prepared from
bismuth trinitrate pentahydrate: influence of bismuth concentration,
Catal. Today, 93–95 (2004) 701–709.
- V. Fruth, M. Popa, D. Berger, C.M. Ionica, M. Jitianu, Phases
investigation in the antimony doped BO system, J. Eur. Ceram.
Soc., 24 (2004) 1295–1299.
- S.R.G. Carrazan, C. Martin, V. Rives, R. Vidal, An FT-IR
spectroscopy study of the adsorption and oxidation of propene
on multiphase Bi, Mo and Co catalysts, Spectrochim. Acta Part
A, 52 (1996) 1107–1118.
- M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, M.M. Abdullah,
Fabrication of ZnO nanoparticles based sensitive methanol
sensor and efficient photocatalyst, Appl. Surf. Sci., 258 (2012)
7515–7522.
- S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Low-temperature
growth of ZnO nanoparticles: photocatalyst and acetone sensor,
Talanta, 85 (2011) 943–949.
- P. Niu, G. Liu, H.M. Cheng, Nitrogen vacancy-promoted
photocatalytic activity of graphitic carbon nitride, J. Phys.
Chem. C, 116 (2012) 11013–11018.
- S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Enhanced disinfection
application of Ag-modified g-C3N4 composite under visible
light, Appl. Catal., B, 186 (2016) 77–87.
- W.J. Shan, Y. Hu, Z.G. Bai, M.M. Zheng, C.H. Wei, In situ preparation
of g-C3N4/ bismuth-based oxide nanocomposites
with enhanced photocatalytic activity, Appl. Catal., B, 188 (2016)
1–12.
- M. Sun, Y. Wang, Y. Shao, Y.H. He, Q. Zheng, H.K. Liang,
T. Yan, B. Du, Fabrication of a novel Z-scheme g-C3N4/Bi4O7
heterojunction photocatalyst with enhanced visible light-driven
activity toward organic pollutants, J. Colloid Interface Sci., 501
(2017) 123–132.
- H. Zou, M.X. Song, F.C. Yi, L. Bian, P. Liu, S. Zhang, Simulated sunlight-activated photocatalysis of Methyl Orange using
carbon and lanthanum co-doped BO-TiO2 composite, J. Alloy.
Compd., 680 (2016) 54–59.
- S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada,
R. Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4
dispersed over graphitic carbon sand composite and bentonite
as magnetically recoverable photocatalyst for antibiotic mineralization,
Sep. Purif. Technol., 172 (2017) 498–511.
- P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.H. Lim, D.Y. Jeong,
R.P. Dewedi, A.K. Saini, P. Singh, Islanding of EuVO4 on high dispersed
fluorine doped few layered graphene sheets for
efficient photocatalytic mineralization of phenolic compounds
and bacterial disinfection, J. Taiwan Inst. Chem. Eng., 93 (2018)
528–542.
- P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh,
P. Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized
on graphene sand composite for investigation of photocatalytic
mineralization of oxytetracycline and ampicillin, Process Saf.
Environ. Prot., 106 (2017) 104–116.
- A. Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically
recoverable graphitic carbon nitride and NiFe2O4 based magnetic
photocatalyst for degradation of oxytetracycline antibiotic
in simulated wastewater under solar light, J. Environ. Chem.
Eng., 6 (2018) 3874–3883.
- P. Raizada, B. Priya, P. Thakur, P. Singh, Solar light induced
photodegradation of oxytetracycline using Zr doped TiO2/CaO
based nanocomposite, Indian J. Chem., 55 (2016) 803–809.
- S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of
parameters on the heterogeneous photocatalytic degradation
of pesticides and phenolic contaminants in wastewater: a short
review, J. Environ. Manage., 92 (2011) 311–330.
- W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxidemediated
photocatalysed degradation of few selected organic
pollutants in aqueous suspensions, Catal. Today, 124 (2007)
133–148.
- J.M. Herrmann, Heterogeneous photocatalysis: fundamentals
and applications to the removal of various types of aqueous
pollutants, Catal. Today, 53 (1999) 115–129.
- N. Daneshvar, S. Aber, A. Khani, A.R. Khataee, Study of
imidacloprid removal from aqueous solution by adsorption onto
granular activated carbon using an on–line spectrophotometric
analysis system, J. Hazard. Mater., 144 (2007) 47–51.
- P. Singh, Sonu, P. Raizada, A. Sudhaik, P. Shandilya, P. Thakur,
S. Agarwal, V.K. Gupta, Enhanced photocatalytic activity and
stability of AgBr/BiOBr/graphene heterojunction for phenol degradation
under visible light, J. Saudi Chem. Soc., 23 (2018) 586–599.
- P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B.
Jonnalagadda, P. Thakur, Solar photocatalytic activity of nano-
ZnO supported on activated carbon or brick grain particles: role
of adsorption in dye degradation, Appl. Catal., A, 486 (2014)
159–169.
- B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh,
Photocatalytic mineralization and degradation kinetics of
ampicillin and oxytetracycline antibiotics using graphene sand
composite and chitosan supported BiOCl, J. Mol. Catal. A, 423
(2016) 400–413.
- P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung,
Visible light assisted photodegradation of 2, 4-dinitrophenol
using Ag2CO3 loaded phosphorus and sulphur co-doped
graphitic carbon nitride nanosheets in simulated wastewater,
Arab. J. Chem., (2018), (in press), https://doi.org/10.1016/j.arabjc.2018.10.004.
- B. Pare, S.B. Jonnalagadda, H. Tomar, P. Singh, V.W. Bhagwat,
ZnO assisted photocatalytic degradation of acridine orange in
aqueous solution using visible irradiation, Desalination, 232
(2008) 80–90.
- T. Ding, D. Jacobs, B. Lavine, Liquid chromatography-mass
spectrometry identification of imidacloprid photolysis
products, Microchem. J., 99 (2011) 535–541.
- M. Turabik, N. Oturan, B. Gözmen, M.A. Oturan, Efficient
removal of insecticide “imidacloprid” from water by
electrochemical advanced oxidation processes, Environ. Sci.
Pollut. Res., 21 (2014) 8387−8397.
- S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Study on the separation
mechanisms of photogenerated electrons and holes for
composite photocatalysts g-C3N4-WO3, Appl. Catal., B, 150−151
(2014) 564−573.
- H.X. Zhao, H.T. Yu, X. Quan, S. Chen, Y.B. Zhang, H.M. Zhao,
H. Wang, Fabrication of atomic single layer graphitic-C3N4
and its high performance of photocatalytic disinfection under
visible light irradiation, Appl. Catal., B, 152−153 (2014) 46−50.
- S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of Rhodamine B
and methyl orange over boron-doped g-C3N4 under visible light
irradiation, Langmuir, 26 (2010) 3894−3901.
- H. Lee, W.Y. Choi, Photocatalytic oxidation of arsenite in TiO2
suspension: kinetics and mechanisms, Environ. Sci. Technol., 36
(2002) 3872−3878.
- W.J. Li, D.Z. Li, Y.M. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao,
Evidence for the active species involved in the photodegradation
process of methyl orange on TiO2, J. Phys. Chem. C, 116 (2012)
3552−3560.