References

  1. R.K. Vital, K.V.N. Saibaba, K.B. Shaik, R. Gopinath, Dye removal by adsorption: a review, J. Biorem. Biodegrad., 7 (2016) 371–374.
  2. K. Grace Pavithra, P. Senthil Kumar, V. Jaikumar, P. Sundar Rajan, Removal of colorants from wastewater: a review on sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019) 1–19.
  3. M.C. Collivignarellia, A. Abbàb, M. Carnevale Miinoa, S. Damiani, Treatments for color removal from wastewater: State of the art, J. Environ. Manage., 236 (2019) 727–745.
  4. M.T. Yagub, T.K. Sen, Sh. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  5. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  6. Y. Zhou, L. Zhang, Zh. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: a review, J. Mol. Liq., 212 (2015) 739–762.
  7. L. Bulgariu, L. Belén Escudero, O. Solomon Bello, M. Iqbal, J. Nisar, K. Adesina Adegoke, F. Alakhras, M. Kornaros, I. Anastopoulos, The utilization of leaf-based adsorbents for dyes removal: a review, J. Mol. Liq., 276 (2019) 728–747.
  8. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review, Environ. Pollut., 252 (2019) 352–365.
  9. W. Li, B. Mu, Y. Yanga, Feasibility of industrial-scale treatment of dye wastewater via bioadsorption technology, Bioresour. Technol., 277 (2019) 157–170.
  10. Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, Sh. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Zh. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, Y. Zhang, Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review, Chemosphere, 211 (2018) 235–253.
  11. B.H. Hameed, Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, J. Hazard. Mater., 161 (2009) 753–759.
  12. S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res., 91 (2016) 156–173.
  13. E. Plotnikov, I. Martemianova, D. Martemianova, S. Zhuravkov, O. Voronova, E. Korotkova, S. Vladimir, Water purification with natural sorbents: effect of surface modification with nanostructured particles, Procedia Chem., 15 (2015) 219–224.
  14. G. Yuan, Natural and modified nanomaterials as sorbents of environmental contaminants, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 39 (2004) 2661–2670.
  15. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicol, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater.Technol., 9 (2016) 10–40.
  16. L. Garcıa-Rıo, P. Hervella, J.C. Mejuto, M. Parajó, Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecyl sulfate, Chem. Phys., 335 (2007) 164–176.
  17. D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater—a review, J. Water Process Eng., 7 (2015) 244–265.
  18. K. Bing Tan, M. Vakili, B. Amini Horri, Ph. Eong Poh, A. Zuhairi Abdullah, B. Salamatinia, Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms, Sep. Purif. Technol., 150 (2015) 229–242.
  19. R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration – a review, Environ. Nanotechnol. Monit. Manage., 1–2 (2014) 36–49.
  20. Z. Karimi, L. Karimi, H. Shokrollahi, Nano-magnetic particles used in biomedicine: core and coating materials, Mater. Sci. Eng. C, 33 (2013) 2465–2475.
  21. X. Liu, J. Tiana, Y. Lia, N. Sun, Sh. Mi, Y. Xie, Z. Chen, Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon, J. Hazard. Mater., 373 (2019) 397–407.
  22. M. Filippousi, M. Angelakeris, M. Katsikini, E. Paloura, I. Efthimiopoulos, Y. Wang, D. Zamboulis, G.V. Tendeloo, Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles, J. Phys. Chem. C, 118 (2014) 16209–16217.
  23. A.M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review, Adv. Colloid Interface Sci., 245 (2017) 20–39.
  24. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence, Chemosphere, 200 (2018) 330–343.
  25. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  26. A. Ebrahimian Pirbazari, E. Saberikhah, N. Gholami Ahmad Gorabi, Fe3O4 nanoparticles loaded onto wheat straw: an efficient adsorbent for Basic Blue 9 adsorption from aqueous solution, Desal. Wat. Treat., 57 (2016) 4110–4121.
  27. A. Ebrahimian Pirbazari, B. Fakhari Kisom, M. Ghamangiz Khararoodi, Anionic surfactant-modified rice straw for removal of methylene blue from aqueous solution, Desal. Wat. Treat., 57 (2016) 18202–18216.
  28. S. Lagergren, K. Sven, Vetenskapsakad. About the theory of so-called adsorption of soluble substances, Handl., 24 (1898) 1–39.
  29. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  30. I.A.W. Tan, B.H. Hameed, Adsorption isotherms, thermodynamics and desorption studies of basic dye on activated carbon derived from oil palm empty fruit bunch, J. Appl. Sci., 10 (2010) 2565–2571.
  31. C. Cojocaru, P. Samoila, P. Pascariu, Chitosan-based magnetic adsorbent for removal of water-soluble anionic dye: artificial neural network modeling and molecular docking insights, Int. J. Biol. Macromol., 123 (2019) 587–599.
  32. N.G. Turan, B. Mesci, O. Ozgonenel, Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent, Chem. Eng. J., 173 (2011) 98–105.
  33. P. Assefi, M. Ghaedi, A. Ansari, M.H. Habibi, M.S. Momeni, Artificial neural network optimization for removal of hazardous dye Eosin Y from aqueous solution using Co2O3-NP-AC: isotherm and kinetics study, J. Ind. Eng. Chem., 20 (2014) 2905–2913.
  34. F.N. Chianeh, J.B. Parsa, H.R. Vahidian, Artificial neural network modeling for removal of azo dye from aqueous solutions by Ti anode coated with multiwall carbon nanotubes, Environ. Prog. Sustainable Energy, 36 (2017) 1778–1784.
  35. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011) 3534–3539.
  36. K.-H. Choi, K.-K. Wang, E.P. Shin, S.-L. Oh, J.-S. Jung, H.-K. Kim, Y.-R. Kim, Water soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application, J. Phys. Chem. C, 115 (2011) 3212–3219.
  37. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater., 185 (2011) 17–23.
  38. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  39. A. Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater., 179 (2010) 564–572.
  40. N. Zaghbani, A. Hafiane, M. Dhahbi, Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration, Sep. Purif. Technol., 55 (2007) 117–124.
  41. Y. Tian, C. Ji, M. Zhao, M. Xu, Y. Zhang, R. Wang, Preparation and characterization of baker’s yeast modified by nano-Fe3O4: application of biosorption of methyl violet in aqueous solution, Chem. Eng. J., 165 (2010) 474–481.
  42. V.K. Gupta, A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J., 180 (2012) 81–90.
  43. H. Yong-Meia, C. Mana, H. Zhong-Bob, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
  44. N. Nasuha, B.H. Hameed, A.T. Mohd Din, Rejected tea as a potential low-cost adsorbent for the removal of methylene blue, J. Hazard. Mater., 175 (2010) 126–132.
  45. J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, J. Chem. Eng., 300 (2016) 254–263.
  46. P. Senthil Kumar, C. Senthamarai, A. Durgadevi, Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of copper ions onto the surface modified agricultural waste, Environ. Prog. Sustainable Energy, 33 (2014) 28–37.
  47. N. Asasian, T. Kaghazchi, Comparison of dimethyl disulfide and carbon disulfide in sulfurization of activated carbons for producing mercury adsorbents, Ind. Eng. Chem. Res., 51 (2012) 12046–12057.
  48. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH Verlag Gmb H&Co.KGaA, Weinheim, 2003.
  49. N. Asasian, T. Kaghazchi, Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase, Int. J. Environ. Sci. Technol., 12 (2015) 2511–2522.
  50. S. Zeng, S. Duan, R. Tang, L. Li, C. Liu, D. Sun, Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption, Chem. Eng. J., 258 (2014) 218–228.
  51. I.D. Mall, V.C. Srivastava, G.V.A. Kumar, I.M. Mishra, Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, Colloids Surf., A, 278 (2006) 175–187.
  52. G.D. Garson, Interpreting neural-network connection weights, AI Expert., 6 (1991) 46–51.