References

  1. A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, Environ. Manage., 93 (2012) 154–168.
  2. T. Fazal, A. Mushtaq, F. Rehman, A.U. Khan, N. Rashid, W. Farooq, M.S.U. Rehman, J. Xu, Bioremediation of textile wastewater and successive biodiesel production using microalgae, Renewable Sustainable Energy Rev., 82 (2017) 3107–3126.
  3. F. Abiri, N. Fallah, B. Bonakdarpour, Sequential anaerobicaerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater, Water Sci. Technol., 75 (2017) 1261–1269.
  4. F. Gomri, M. Boutahala, H. Zaghouane-Boudiaf, S.A. Korili, A. Gil, Removal of acid blue 80 from aqueous solutions by adsorption on chemical modified bentonites, Desal. Wat. Treat., 57 (2016) 1–10.
  5. H.Y. Li, S.Y. Liu, J.H. Zhao, N. Feng, Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process, Colloids Surf., A, 494 (2016) 222–227.
  6. W. Handayani, A.I. Kristijanto, A.I.R. Hunga, Are natural dyes eco-friendly? A case study on water usage and wastewater characteristics of batik production by natural dyes application, Sustainable Water Resour. Manage., 3 (2018) 1–11.
  7. M. Tinkara, L. Aleksandra, M. Gerhard, T. Matejka, Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines, Sensors, 18 (2018) 1–13.
  8. M.E. Karim, K. Dhar, M.T. Hossain, Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dying effluent, Genet. Eng. Biotechnol. News, 16 (2018) 375–380.
  9. W.T. Mook, M.K. Aroua, M. Szlachta, Palm shell-based activated carbon for removing reactive black 5 dye: equilibrium and kinetics studies, Bioresources, 11 (2016) 1432–1447.
  10. H.S. Saroyan, D.A. Giannakoudakis, C.S. Sarafidis, N.K. Lazaridis, E.A. Deliyanni, Effective impregnation for the preparation of magnetic mesoporous carbon: application to dye adsorption, Chem. Technol. Biotechnol., 92 (2017) 1899–1911.
  11. M. Abbasi, Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal, J. Cleaner Prod., 145 (2017) 105–113.
  12. A. Yurtsever, E. Sahinkaya, E. Aktaş, D. Uçar, O. Cınar, Z. Wang, Performances of anaerobic and aerobic membrane bioreactors for the treatmentof synthetic textile wastewater, Bioresour. Technol., 192 (2015) 564–573.
  13. W.F. Khalik, L.N. Ho, S.A. Ong, Y.S. Wong, N.A. Yusoff, F. Ridwan, Solar photocatalytic mineralization of dye new coccine in aqueous phase using different photocatalysts, Water Air Soil Pollut., 227 (2016) 1–8.
  14. M.E.I. Haddad, A. Regti, M.R. Laamari, R. Slimani, R. Mamouni, S.E.I. Antri, S. Lazar, Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng., 45 (2014) 533–540.
  15. H. Al-Johani, M.A. Salam, Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution, Colloid Interface Sci., 360 (2011) 760–767.
  16. H.A. Ahsaine, M. Zbair, Z. Anfar, Y. Naciri, R. El Haouti, N. El Alem, M. Ezahri, Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: kinetics, equilibrium isotherms and surface statistical modeling, Mater. Today Chem., 8 (2018) 121–132.
  17. I. Enniya, L. Rghioui, A. Jourani, Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels, Sustainable Chem. Pharm., 7 (2018) 9–16.
  18. Y.F. Pan, C.T. Chiou, T.F. Lin, Erratum to: adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD), Environ. Sci. Pollut. Res. Int., 17 (2010) 1401–1410.
  19. C. Boruban, E.N. Esenturk, Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption, J. Nanopart. Res., 20 (2018) 59.
  20. W. Suprun, M. Lutecki, R. Gläser, H. Papp, Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol, J. Mol. Catal. A: Chem., 342 (2011) 91–100.
  21. S. Babay, T. Mhiri, M. Toumi, Synthesis structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route, J. Mol. Struct., 1085 (2015) 286–293.
  22. Y.P. Yuan, D. Liu, D.Y. Tan, K.K. Liu, H.G. Yu, Y.H. Zhong, A.H. Yuan, W.B. Yu, H.P. He, Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption: the effects of heating pretreatment, Microporous Mesoporous Mater., 170 (2013) 9–19.
  23. Y. Du, L. Wang, J. Wang, G. Zheng, J. Wu, H. Dai, Flower-, wire-, and sheet-like MnO2-deposited diatomites: highly efficient absorbents for the removal of Cr(Ⅵ), Environ. Sci., 29 (2015) 71–81.
  24. X.Z. Yu, D.H. Xiao, L. Fei, P.D. Zeng, Y.G. Zao, L. Jing, pH-depend degradation of methylene blue via rationaldesigned MnO2 nanosheet-decorated diatomites, Ind. Eng. Chem. Res., 53 (2014) 6966–6977.
  25. A.S.O. Moscofian, C.T.G.V.M.T. Pires, A.P. Vieira, C. Airoldi, Organofunctionalized magnesium phyllosilicates as mono-or bifunctitonal entities for industrial dyes removal, RSC Adv., 2 (2012) 3502–3511.
  26. S. Wang, B. Gao, Y. Li, A. Mosa, A.R. Zimmerman, A.R. Ma, W.G. Harris. K.W. Migliaccio, Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead, Bioresour. Technol., 181 (2015) 13–17.
  27. C. González, J.I. Gutiérrez, J.R. González-Velasco, A. Cid, A. Arranz, J.F. Arranz, Transformations of manganese oxides under different thermal conditions, J. Therm. Anal., 47 (1996) 93–102.
  28. J. Zhang, D.G. Tang, H.W. Yang, H.M. Yang, Preparation of dimanganese trioxide by decomposing manganese carbonate under high temperature, Shandong Chem. Ind., 42 (2013) 1–4 (In Chinese).
  29. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
  30. L. Jiang, L. Liu, S. Xiao, J. Chen, Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution, Chem. Eng. J., 284 (2016) 609–619.
  31. D. Hui, G. Zhang, X. Xu, G. Tao, J. Dai, Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation, J. Hazard. Mater., 182 (2010) 217–224.
  32. R.H. Hesas, A. Arami-Niya, M.A.W.D. Wan, J.N. Sahu, Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption, Bioresources, 8 (2013) 2950–2966.
  33. Z.C. Kadirova, M. Hojamberdiev, K.I. Katsumata, T. Isobe, N. Matsushita, A. Nakajima, Preparation of iron oxideimpregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid, J. Environ. Sci. Health., Part A, 49 (2014) 763–769.
  34. S. Wang, B. Gao, Y. Li, Y. Wan, A.E. Creamer, Sorption of arsenate onto magnetic iron–manganese (Fe–Mn) biochar composites, RSC Adv., 5 (2015) 67971–67978.
  35. N.F. Cardoso, E.C. Lima, I.S. Pinto, C.V. Amavisca, B. Royer, R.B. Pinto, W.S. Alencar, S.F.P. Pereira, Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution, Environ. Manage., 92 (2011) 1237–1247.
  36. B. Royer, N.F. Cardoso, E.C. Lima, T.R. Macedo, C. Airoldi, A useful organofunctionalized layered silicate for textile dye removal, J. Hazard. Mater., 181 (2010) 366–374.
  37. H.R. Mahmoud, S.A. El-Molla, M. Saif, Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater, Powder Technol., 249 (2013) 225–233.