References

  1. N. Limphitakphong, C. Pharino, P. Kanchanapiya, Environmental impact assessment of centralized municipal wastewater management in Thailand, Int. J. Life Cycle Assess., 21 (2016) 1789–1798.
  2. G. De Feo, C. Ferrara, Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool, Environ. Technol., 38 (2017) 1943–1948.
  3. S. Bai, X. Wang, G. Huppes, X. Zhao, N. Ren, Using sitespecific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: a comparative study of sitegeneric and site-specific methods, J. Cleaner Prod., 144 (2017) 1–7.
  4. S. Foteinis, J.M. Monteagudo, A. Durán, E. Chatzisymeon, Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale, Sci. Total Environ., 612 (2018) 605–612.
  5. J. Wei, X. Hao, M.C.M. van Loosdrecht, J. Li, Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review, Renewable Sustainable Energy Rev., 89 (2018) 16–26.
  6. E. Igos, M. Besson, T. Navarrete Gutiérrez, A.B. Bisinella de Faria, E. Benetto, L. Barna, A. Ahmadi, M. Spérandio, Assessment of environmental impacts and operational costs of the implementation of an innovative source-separated urine treatment, Water Res., 126 (2017) 50–59.
  7. G. Bertanza, M. Canato, G. Laera, M. Vaccari, M. Svanström, S. Heimersson, A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economicenvironmental assessment, Environ. Sci. Pollut. Res., 24 (2017) 17383–17393.
  8. M. Meneses, H. Concepción, R. Vilanova, Joint Environmental and Economical Analysis of Wastewater Treatment Plants Control Strategies: a Benchmark Scenario Analysis, Sustainability, 8 (2016) 360.
  9. L. Corominas, H.F. Larsen, X. Flores-Alsina, P.A. Vanrolleghem, Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems, J. Environ. Manage., 128 (2013) 759–767.
  10. S. Raghuvanshi, V. Bhakar, C. Sowmya, K.S. Sangwan, Waste water treatment plant life cycle assessment: treatment process to reuse of water, Procedia CIRP, 61 (2017) 761–766.
  11. S. Polruang, S. Sirivithayapakorn, R. Prateep Na Talang, A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs, J. Cleaner Prod., 172 (2018) 635–648.
  12. M.C. Tomei, G. Bertanza, M. Canato, S. Heimersson, G. Laera, M. Svanström, Techno-economic and environmental assessment of upgrading alternatives for sludge stabilization in municipal wastewater treatment plants, J. Cleaner Prod., 112 (2016) 3106–3115.
  13. A. Gianico, G. Bertanza, C.M. Braguglia, M. Canato, G. Laera, S. Heimersson, M. Svanström, G. Mininni, Upgrading a wastewater treatment plant with thermophilic digestion of thermally pre-treated secondary sludge: techno-economic and environmental assessment, J. Cleaner Prod., 102 (2015) 353–361.
  14. G. Bertanza, M. Canato, S. Heimersson, G. Laera, R. Salvetti, E. Slavik, M. Svanström, Techno-economic and environmental assessment of sewage sludge wet oxidation, Environ. Sci. Pollut. Res., 22 (2015) 7327–7338.
  15. M. Svanström, G. Bertanza, D. Bolzonella, M. Canato, C. Collivignarelli, S. Heimersson, G. Laera, G. Mininni, G. Peters, M.C. Tomei, Method for technical, economic and environmental assessment of advanced sludge processing routes, Water Sci. Technol., 69 (2014) 2407.
  16. S. Morera, L. Corominas, M. Rigola, M. Poch, J. Comas, Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts, Water Res., 122 (2017) 614–623.
  17. ISO, ISO 14044:2006(en), Environmental Management — Life Cycle Assessment — Requirements and Guidelines, 2006. Available at: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed- 1:v1:en (Accessed 15 June 2018).
  18. ISO, ISO 14040:2006(en), Environmental Management — Life Cycle Assessment — Principles and Framework, 2006. Available at: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en (Accessed 15 June 2018).
  19. A. Lehmann, V. Bach, M. Finkbeiner, Product environmental footprint in policy and market decisions: applicability and impact assessment, Integr. Environ. Assess. Manage., 11 (2015) 417–424.
  20. L. Corominas, J. Foley, J.S. Guest, A. Hospido, H.F. Larsen, S. Morera, A. Shaw, Life cycle assessment applied to wastewater treatment: state of the art, Water Res., 47 (2013) 5480–5492.
  21. L. Six, B. De Wilde, F. Vermeiren, S. Van Hemelryck, M. Vercaeren, A. Zamagni, P. Masoni, J. Dewulf, S. De Meester, Using the product environmental footprint for supply chain management: lessons learned from a case study on pork, Int. J. Life Cycle Assess., 22 (2017) 1354–1372.
  22. European Commission, Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations, Off. J. Eur. Union, 56 (2013) 210.
  23. M. Ferreri, I. Cavallotti, S. Alini, P. Accorinti, A. Andreoni, R. Guerini, F. Servalli, Supply Chain Optimization: implementazione della metodologia OEF/PEF alla filiera produttiva della Poliammide 6,6 per ottimizzare i processi e ridurre gli impatti lungo il ciclo di vita, 2016. Available at: http://www.studioica.it/download/Articolo_Convegno LCA_Giu2016_MARTA FERRERI_Rev1.pdf (Accessed 6 June 2018).
  24. B.I. Escher, N. Bramaz, P. Quayle, S. Rutishauser, E.L. Vermeirssen, Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery, J. Environ. Monit., 10 (2008) 622.
  25. P. Välitalo, N. Perkola, T.B. Seiler, M. Sillanpää, J. Kuckelkorn, A. Mikola, H. Hollert, E. Schultz, Estrogenic activity in Finnish municipal wastewater effluents, Water Res., 88 (2016) 740–749.
  26. D.J. Caldwell, F. Mastrocco, P.D. Anderson, R. Länge, J.P. Sumpter, Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol, Environ. Toxicol. Chem., 31 (2012) 1396–1406.
  27. M. Avberšek, B. Žegura, M. Filipič, E. Heath, Integration of GC-MSD and ER-Calux® assay into a single protocol for determining steroid estrogens in environmental samples, Sci. Total Environ., 409 (2011) 5069–5075.
  28. G. Bertanza, R. Pedrazzani, M. Dal Grande, M. Papa, V. Zambarda, C. Montani, N. Steimberg, G. Mazzoleni, D. Di Lorenzo, Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure, Water Res., 45 (2011) 2473–2484.
  29. B.I. Escher, F. Leusch, Bioanalytical tools in water quality assessment, IWA Pub, 2012. Available at: https://books.google.it/books?hl=it&lr=&id=5CgiS3yNNbAC&oi=fnd&pg=PR13&dq=Bioanalytical+Tools+in+Water+Quality+Assessment&ots=WssIWkk0K&sig=yn2w752b2VU-yy6HD49VlWGxzGk&redir_esc=y#v=onepage&q=Bioanalytical Tools in Water Quality Assessment&f=false (Accessed 7 June 2018).
  30. B.I. Escher, M. Allinson, R. Altenburger, P.A. Bain, P. Balaguer, W. Busch, J. Crago, N.D. Denslow, E. Dopp, K. Hilscherova, A.R. Humpage, A. Kumar, M. Grimaldi, B.S. Jayasinghe, B. Jarosova, A. Jia, S. Makarov, K.A. Maruya, A. Medvedev, A.C. Mehinto, J.E. Mendez, A. Poulsen, E. Prochazka, J. Richard, A. Schifferli, D. Schlenk, S. Scholz, F. Shiraishi, S. Snyder, G. Su, J.Y.M. Tang, B. van der Burg, S.C. van der Linden, I. Werner, S.D. Westerheide, C.K.C. Wong, M. Yang, B.H.Y. Yeung, X. Zhang, F.D.L. Leusch, Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays, Environ. Sci. Technol., 48 (2014) 1940–1956.
  31. M. Papa, E. Ceretti, G.C. Viola, D. Feretti, I. Zerbini, G. Mazzoleni, N. Steimberg, R. Pedrazzani, G. Bertanza, The assessment of WWTP performance: towards a jigsaw puzzle evaluation?, Chemosphere, 145 (2016) 291–300.
  32. R. Pedrazzani, I. Cavallotti, E. Bollati, M. Ferreri, G. Bertanza, The role of bioassays in the evaluation of ecotoxicological aspects within the PEF/OEF protocols: the case of WWTPs, Ecotoxicol. Environ. Saf., 147 (2018) 742–748.
  33. L. Benini, L. Mancini, S. Sala, S. Manfredi, E.M. Schau, R. Pant, Normalisation Method and Data for Environmental Footprints, European Commission, Joint Research Center, Institute for Environment and Sustainability, Publications Office of the European Union, Luxemburg, ISBN: 978-92-79-40847-2, 2014.
  34. H. Yoshida, J. Mønster, C. Scheutz, Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant, Water Res., 61 (2014) 108–118.
  35. N. Noda, N. Kaneko, M. Mikami, Y. Kimochi, S. Tsuneda, A. Hirata, M. Mizuochi, Y. Inamori, Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system, 2004, pp. 363–370. Available at: https://www.scopus. com/record/display.uri?eid=2-s2.0-0346008003&origin=resul tslist&sort=plf-f&src=s&st1=effects+of+SRT+and+DO+on+N2 O&st2=&sid=0ff3e4bfdf2cb57344b1b9eeb66f3ed3&sot=b&sdt= b&sl=43&s=TITLE-ABS-KEY%28effects+of+SRT+and+DO+on +N2O%29&relpos=0&cit (Accessed 16 April 2018).
  36. V. Lazarova, K.-H. Choo, P. Cornel, Water-Energy Interactions in Water Reuse, IWA Publishing, London, UK, 2012, pp. 87–125.
  37. ISO, ISO 6341:2012(en), Water Quality — Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test, 2013. Available at: https://www.iso.org/obp/ui/#iso:std:iso:6341:ed-4:v1:en (Accessed 27 July 2018).
  38. ISO, ISO 11348-3:2007(en), Water Quality — Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria test) — Part 3: Method Using Freeze-Dried Bacteria, 2009. Available at: https://www.iso.org/obp/ui/#iso:std:iso:11348:-3:ed-2:v1:en (Accessed 27 July 2018).
  39. ISO, ISO 8692:2012(en), Water Quality — Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae, 2012. Available at: https://www.iso.org/obp/ui/#iso:std:iso:8692:ed-3:v1:en (Accessed 27 July 2018).
  40. R.K. Rosenbaum, T.M. Bachmann, L.S. Gold, M.A.J. Huijbregts, O. Jolliet, R. Juraske, A. Koehler, H.F. Larsen, M. MacLeod, M. Margni, T.E. McKone, J. Payet, M. Schuhmacher, D. van de Meent, M.Z. Hauschild, USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment, Int. J. Life Cycle Assess., 13 (2008) 532–546.
  41. I. Cavallotti, S. Alini, M. Ferreri, PEF Product Environmental Footprint (PEF) and Organization Environmental Footprint (OEF): Monitoring and Improving the Environmental Performance by Mean of a Life Cycle Perspective (L’IMPRONTA AMBIENTALE DI PRODOTTO (PEF) E ORGANIZZAZIONE (OEF) Strumenti, 2018. http://www.edizioniambiente.it/libri/1212/l-impronta-ambientale-di-prodotto-pef-e-organizz/ (Accessed 8 February 2019).
  42. European Commission, Product Environmental Footprint Category Rules Guidance - Version 6.3, 2017, pp. 1–181.
  43. W. Piao, Y.-J. Kim, Evaluation of monthly environmental loads from municipal wastewater treatment plants operation using life cycle assessment, Environ. Eng. Res., 21 (2016) 284–290.
  44. H. Slagstad, H. Brattebø, Life cycle assessment of the water and wastewater system in Trondheim, Norway – a case study, Urban Water J., 11 (2014) 323–334.
  45. M. Niero, M. Pizzol, H.G. Bruun, M. Thomsen, Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis, J. Cleaner Prod., 68 (2014) 25–35.
  46. G. Rodriguez-Garcia, N. Frison, J.R. Vázquez-Padín, A. Hospido, J.M. Garrido, F. Fatone, D. Bolzonella, M.T. Moreira, G. Feijoo, Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant, Sci. Total Environ., 490 (2014) 871–879.
  47. J. Foley, D. de Haas, K. Hartley, P. Lant, Comprehensive life cycle inventories of alternative wastewater treatment systems, Water Res., 44 (2010) 1654–1666.
  48. M.J. Kampschreur, H. Temmink, R. Kleerebezem, M.S.M. Jetten, M.C.M. van Loosdrecht, Nitrous oxide emission during wastewater treatment, Water Res., 43 (2009) 4093–4103.
  49. Y. Law, L. Ye, Y. Pan, Z. Yuan, Nitrous oxide emissions from wastewater treatment processes, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367 (2012) 1265–77.
  50. J. Hobson, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories CH4 and N2O Emissions from Waste Water Handling CH4 and N2O Emissions From Waste Water Handling Acknowledgements, Intergov. Panel Clim. Chang. (2003). Available at: https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_2_CH4_N2O_Waste_Water.pdf (Accessed 27 June 2018).
  51. G. Libralato, V. Ghirardini Annamaria, A. Francesco, How toxic is toxic? A proposal for wastewater toxicity hazard assessment, Ecotoxicol. Environ. Saf., 73 (2010) 1602–1611.
  52. G. Libralato, A. Volpi Ghirardini, F. Avezzù, To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management, J. Environ. Manage., 94 (2012) 61–68.
  53. F.D.L. Leusch, S.J. Khan, M.M. Gagnon, P. Quayle, T. Trinh, H. Coleman, C. Rawson, H.F. Chapman, P. Blair, H. Nice, T. Reitsema, Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses, Water Res., 50 (2014) 420–431.
  54. F.D.L. Leusch, S.J. Khan, S. Laingam, E. Prochazka, S. Froscio, T. Trinh, H.F. Chapman, A. Humpage, Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water, Water Res., 49 (2014) 300–315.
  55. R. Pedrazzani, G. Bertanza, I. Brnardić, Z. Cetecioglu, J. Dries, J. Dvarionienė, A.J. García-Fernández, A. Langenhoff, G. Libralato, G. Lofrano, B. Škrbić, E. Martínez-López, S. Meriç, D.M. Pavlović, M. Papa, P. Schröder, K.P. Tsagarakis, C. Vogelsang, Opinion paper about organic trace pollutants in wastewater: toxicity assessment in a European perspective, Sci. Total Environ., 651 (2019) 3202–3221.
  56. F.C. Fischer, L. Henneberger, M. König, K. Bittermann, L. Linden, K.-U. Goss, B.I. Escher, Modeling exposure in the Tox21 in vitro bioassays, Chem. Res. Toxicol., 30 (2017) 1197–1208.
  57. B.I. Escher, J. Hackermüller, T. Polte, S. Scholz, A. Aigner, R. Altenburger, A. Böhme, S.K. Bopp, W. Brack, W. Busch, M. Chadeau-Hyam, A. Covaci, A. Eisenträger, J.J. Galligan, N. Garcia-Reyero, T. Hartung, M. Hein, G. Herberth, A. Jahnke, J. Kleinjans, N. Klüver, M. Krauss, M. Lamoree, I. Lehmann, T. Luckenbach, G.W. Miller, A. Müller, D.H. Phillips, T. Reemtsma, U. Rolle-Kampczyk, G. Schüürmann, B. Schwikowski, Y.-M. Tan, S. Trump, S. Walter-Rohde, J.F. Wambaugh, From the exposome to mechanistic understanding of chemical-induced adverse effects, Environ. Int., 99 (2017) 97–106.
  58. Y. Zang, Y. Li, C. Wang, W. Zhang, W. Xiong, Towards more accurate life cycle assessment of biological wastewater treatment plants: a review, J. Cleaner Prod., 107 (2015) 676–692.
  59. M.Z. Hauschild, M. Huijbregts, O. Jolliet, M. Macleod, M. Margni, D. van de Meent, R.K. Rosenbaum, T.E. McKone, Building a Model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony, Environ. Sci. Technol., 42 (2008) 7032–7037.
  60. M.Z. Hauschild, Y. Dong, R.K. Rosenbaum, Development of characterization factors for metals in coastal seawater, APA, 2018. Available at: http://orbit.dtu.dk/ws/files/93556749/ Development_ of_characterization_factors.pdf (Accessed 6 August 2018).
  61. N. Gandhi, M.L. Diamond, D. van de Meent, M.A.J. Huijbregts, W.J.G.M. Peijnenburg, J. Guinée, New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc, Environ. Sci. Technol., 44 (2010) 5195–5201.