References
- F.A. Henglein, Chemical Technology, Elsevier Science, 2013.
Available at: https://books.google.com.tr/books?id=ie79BAAAQBAJ.
- V.P. (Bill) Evangelou, Y.L. Zhang, A review: pyrite oxidation
mechanisms and acid mine drainage prevention, Crit. Rev. Env.
Sci. Technol., 25 (1995) 141–199.
- R. Murphy, D.R. Strongin, Surface reactivity of pyrite and
related sulfides, Surf. Sci. Rep., 64 (2009) 1–45.
- C.M. Oliveira, C.M. Machado, G.W. Duarte, M. Peterson,
Beneficiation of pyrite from coal mining, J. Cleaner Prod.,
139 (2016) 821–827.
- A.S. Sheoran, V. Sheoran, Heavy metal removal mechanism of
acid mine drainage in wetlands: a critical review, Miner. Eng.,
19 (2006) 105–116.
- Y.L. Idaszkin, E. Carol, A. María del Pilar, Mechanism of removal
and retention of heavy metals from the acid mine drainage
to coastal wetland in the Patagonian marsh, Chemosphere,
183 (2017) 361–370.
- H. Strathmann, Ion-Exchange Membrane Separation Processes,
Elsevier Science, 2004.
- Y. Tanaka, Electrodialysis, in: Prog. Filtr. Sep., 2014.
- Y. Mei, C.Y. Tang, Recent developments and future perspectives
of reverse electrodialysis technology: a review, Desalination,
425 (2018) 156–174.
- M. Turek, E. Laskowska, K. Mitko, M. Chorążewska, P. Dydo,
K. Piotrowski, A. Jakóbik-Kolon, Application of nanofiltration
and electrodialysis for improved performance of a salt
production plant, Desal. Wat. Treat., 64 (2017) 244–250.
- B. Yüzer, Wastewater Treatment by Bipolar Membrane Electrodialysis
Process and Evaluation of Reuse Alternatives, Istanbul
University, 2018.
- R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, J. Zoppas Ferreira,
Evaluation of the electrodialysis process for the treatment
of metal finishing wastewater, J. Braz. Chem. Soc., 13 (2002)
540–547.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- A. Aouni, A.D. Altınay, F. İlhan, D.Y. Koseoglu-İmer, Y. Avşar,
A. Hafiane, B. Keskinler, I. Koyuncu, The applicability of
combined physico-chemical processes for treatment and reuse
of synthetic textile reverse osmosis concentrate, Desal. Wat.
Treat., 111 (2018) 111–124.
- D. Babilas, P. Dydo, A. Jakóbik-Kolon, A. Milewski,
D. Bentkowska, A. Franczak, R. Nycz, The effectiveness of nickel
recovery from spent electroplating baths by electrodialysis,
Desal. Wat. Treat., 64 (2017) 233–236.
- L. Wang, Z.X. Li, Z.Z. Xu, F. Zhang, J.E. Efome, N.W. Li,
Proton blockage membrane with tertiary amine groups for
concentration of sulfonic acid in electrodialysis, J. Membr. Sci.,
555 (2018) 78–87.
- N. White, M. Misovich, E. Alemayehu, A. Yaroshchuk,
M.L. Bruening, Highly selective separations of multivalent
and monovalent cations in electrodialysis through Nafion
membranes coated with polyelectrolyte multilayers, Polymer
(Guildf), 103 (2016) 478–485.
- Y. He, L. Ge, Z. Ge, Z. Zhao, F. Sheng, X. Liu, X. Ge, Z. Yang,
R. Fu, Z. Liu, L. Wu, T. Xu, Monovalent cations permselective
membranes with zwitterionic side chains, J. Membr. Sci.,
563 (2018) 320–325.
- E.W. Rice, L. Bridgewater, Standard Methods for the Examination
of Water and Wastewater, American Public Health
Association, American Water Works Association, Water Environment
Federation, 2012.