References

  1. F.A. Henglein, Chemical Technology, Elsevier Science, 2013. Available at: https://books.google.com.tr/books?id=ie79BAAAQBAJ.
  2. V.P. (Bill) Evangelou, Y.L. Zhang, A review: pyrite oxidation mechanisms and acid mine drainage prevention, Crit. Rev. Env. Sci. Technol., 25 (1995) 141–199.
  3. R. Murphy, D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 64 (2009) 1–45.
  4. C.M. Oliveira, C.M. Machado, G.W. Duarte, M. Peterson, Beneficiation of pyrite from coal mining, J. Cleaner Prod., 139 (2016) 821–827.
  5. A.S. Sheoran, V. Sheoran, Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review, Miner. Eng., 19 (2006) 105–116.
  6. Y.L. Idaszkin, E. Carol, A. María del Pilar, Mechanism of removal and retention of heavy metals from the acid mine drainage to coastal wetland in the Patagonian marsh, Chemosphere, 183 (2017) 361–370.
  7. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier Science, 2004.
  8. Y. Tanaka, Electrodialysis, in: Prog. Filtr. Sep., 2014.
  9. Y. Mei, C.Y. Tang, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425 (2018) 156–174.
  10. M. Turek, E. Laskowska, K. Mitko, M. Chorążewska, P. Dydo, K. Piotrowski, A. Jakóbik-Kolon, Application of nanofiltration and electrodialysis for improved performance of a salt production plant, Desal. Wat. Treat., 64 (2017) 244–250.
  11. B. Yüzer, Wastewater Treatment by Bipolar Membrane Electrodialysis Process and Evaluation of Reuse Alternatives, Istanbul University, 2018.
  12. R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, J. Zoppas Ferreira, Evaluation of the electrodialysis process for the treatment of metal finishing wastewater, J. Braz. Chem. Soc., 13 (2002) 540–547.
  13. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  14. A. Aouni, A.D. Altınay, F. İlhan, D.Y. Koseoglu-İmer, Y. Avşar, A. Hafiane, B. Keskinler, I. Koyuncu, The applicability of combined physico-chemical processes for treatment and reuse of synthetic textile reverse osmosis concentrate, Desal. Wat. Treat., 111 (2018) 111–124.
  15. D. Babilas, P. Dydo, A. Jakóbik-Kolon, A. Milewski, D. Bentkowska, A. Franczak, R. Nycz, The effectiveness of nickel recovery from spent electroplating baths by electrodialysis, Desal. Wat. Treat., 64 (2017) 233–236.
  16. L. Wang, Z.X. Li, Z.Z. Xu, F. Zhang, J.E. Efome, N.W. Li, Proton blockage membrane with tertiary amine groups for concentration of sulfonic acid in electrodialysis, J. Membr. Sci., 555 (2018) 78–87.
  17. N. White, M. Misovich, E. Alemayehu, A. Yaroshchuk, M.L. Bruening, Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers, Polymer (Guildf), 103 (2016) 478–485.
  18. Y. He, L. Ge, Z. Ge, Z. Zhao, F. Sheng, X. Liu, X. Ge, Z. Yang, R. Fu, Z. Liu, L. Wu, T. Xu, Monovalent cations permselective membranes with zwitterionic side chains, J. Membr. Sci., 563 (2018) 320–325.
  19. E.W. Rice, L. Bridgewater, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation, 2012.