References

  1. J. Ory, G. Bricheux, A. Togola, J.L. Bonnet, F. Donnadieu-Bernard, L. Nakusi, C. Forestier, O. Traore, Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent, Environ. Pollut., 214 (2016) 635–645.
  2. W. Ben, J. Wang, R. Cao, M. Yang, Y. Zhang, Z. Qiang, Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes, Chemosphere, 172 (2017) 392–398.
  3. G. Ferro, F. Guarino, S. Castiglione, L. Rizzo, Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process, Sci. Total Environ., 560–561 (2016) 29–35.
  4. C. Zanotto, M. Bissa, E. Illiano, V. Mezzanotte, F. Marazzi, A. Turolla, M. Antonelli, C. De Giuli Morghen, A. Radaelli, Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant, Chemosphere, 164 (2016) 627–653.
  5. J. Xu, Y. Xu, H.M. Wang, C.S. Guo, H.Y. Qiu, Y. He, Y. Zhang, X.C. Li, W. Meng, Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluentreceiving river, Chemosphere, 119 (2015) 1379–1385.
  6. J. Ndounla, S. Kenfack, J. Wéthé, C. Pulgarín, Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor, Appl. Catal., B, 148–149 (2014) 144–153.
  7. J. Oh, D.E. Salcedo, C.A. Medriano, S. Kim, Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes, J. Environ. Sci., 26 (2014) 1238–1242.
  8. M.-T. Guo, G.-S. Zhang, Graphene oxide in the water environment could affect tetracycline-antibiotic resistance, Chemosphere, 183 (2017) 197–203.
  9. X.Y. Li, Y. Huang, C. Li, J.M. Shen, Y. Deng, Degradation of pCNB by Fenton like process using α-FeOOH, Chem. Eng. J., 260 (2015) 28–36.
  10. K.D. Lin, J.F. Ding, H.Y. Wang, X.W. Huang, J. Gan, Goethitemediated transformation of bisphenol A, Chemosphere, 89 (2012) 789–795.
  11. M.T. Guo, Q.B. Yuan, J. Yang, Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater, Environ. Sci. Technol., 49 (2015) 5771–5778.
  12. A. Fiorentino, G. Ferro, M.C. Alferez, M.I. Polo-López, P. Fernández-Ibañez, L. Rizzo, Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes, J. Photochem. Photobiol., B, 148 (2015) 43–50.
  13. L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.
  14. A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, The use of iron in advanced oxidation processes, J. Adv. Oxid. Technol., 1 (1996) 18–26.
  15. A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, Ferrioxalatemediated solar degradation of organic contaminants in water, Sol. Energy, 56 (1996) 439–443.
  16. B.C. Faust, J. Hoigné, Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain, Atmos. Environ. Part A, 24 (1990) 79–89.
  17. V.A. Nadtochenko, J. Kiwi, Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields, Inorg. Chem., 37 (1998) 5233–5238.
  18. N. de la Cruz, L. Esquius, D. Grandjean, A. Magnet, A. Tungler, L.F. de Alencastro, C. Pulgarín, Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant, Water Res., 47 (2013) 5836–5845.
  19. A. de Luca, R.F. Dantas, S. Esplugas, Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Res., 61 (2014) 232–242.
  20. S. Papoutsakis, S. Miralles-Cuevas, I. Oller, J.L. Garcia Sanchez, C. Pulgarin, S. Malato, Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: an experimental design approach, Catal. Today, 252 (2015) 61–69.
  21. S. Giannakis, C. Ruales-Lonfat, S. Rtimi, S. Thabet, P. Cotton, C. Pulgarín, Castles fall from inside: evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH, Appl. Catal., B, 185 (2016) 150–162.
  22. A. Fiorentino, R. Cucciniello, A. Di Cesare, D. Fontaneto, P. Prete, L. Rizzo, G. Corno, A. Proto, Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid complex as catalyst at neutral pH, Water Res., 146 (2018) 206–215.
  23. A. Fiorentino, B. Esteban, J.A. Garrido-Cardenas, K. Kowalska, L. Rizzo, A. Aguera, J.A. Sánchez Pérez, Effect of solar photo- Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater, J. Hazard. Mater., 378 (2019) 120737.
  24. W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fentonlike systems, Environ. Sci. Technol., 37 (2003) 1150–1158.
  25. C.R. Keenan, D.L. Sedlak, Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol., 42 (2008) 6936–6941.
  26. X.C. Liu, Y.Y. Zhou, J.C. Zhang, L. Luo, Y. Yang, H.L. Huang, H. Peng, L. Tang, Y. Mu, Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps, Chem. Eng. J., 347 (2018) 379–397.
  27. S. Giannakis, T.-T. Melvin Le, J.M. Entenza, C. Pulgarin, Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment, Water Res., 143 (2018) 334–345.
  28. A. Imai, T. Fukushima, K. Matsushige, Y.-H. Kim, K.S. Choi, Characterization of dissolved organic matter in effluents from wastewater treatment plants, Water Res., 36 (2002) 859–870.
  29. R. Andreozzi, M. Raffaele, P. Nicklas, Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment, Chemosphere, 50 (2003)1319–1330.
  30. A. Rodrigues, A. Brito, P. Janknecht, M.F. Proença¸ R. Nogueira, Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration, J. Environ. Monit., 11 (2009) 377–382.
  31. E.M.-L. Janssen, P.R. Erickson, K. McNeill, Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan, Environ. Sci. Technol., 48 (2014) 4916–4924.
  32. S. Klimkova, M. Cernik, L. Lacinova, J. Filip, D. Jancik, R. Zboril, Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching, Chemosphere, 82 (2011) 1178–1184.
  33. F.C. Tenover, P.M. Elvrum, Detection of two different kanamycin resistance genes in naturally occurring isolates of Campylobacter jejuni and Campylobacter coli, Antimicrob. Agents Chemother., 32 (1988) 1170–1173.
  34. I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232–260.
  35. I. Michael-Kordatou, P. Karaolia, D. Fatta-Kassinos, The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater, Water Res., 129 (2018) 208–230.
  36. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, J. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater., 323 (2017) 274–298.
  37. M. Molkenthin, T. Olmez-Hanci, M.R. Jekel, I. Arslan-Alaton, Photo-Fenton-like treatment of BPA: effect of UV light source and water matrix on toxicity and transformation products, Water Res., 47 (2013) 5052–5064.
  38. WHO, Iron in Drinking-water, Background Document for Development of WHO Guidelines for Drinking Water Quality, In: Guidelines For Drinking-Water Quality, 2nd ed., Vol. 2, Health Criteria and Other Supporting Information, World Health Organization, Geneva, 1996.
  39. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/ American Water Works Association/Water Environment Federation, Washington D.C., USA, 2005.
  40. C. Lee, J. Kim, S.G. Shin, S. Hwang, Absolute and relative Q-PCR quantification of plasmid copy number in Escherichia coli, J. Biotechnol., 123 (2006) 273–280.
  41. J.M. Sousa, G. Macedo, M. Pedrosa, C. Becerra-Castro, S. Castro-Silva, M.F.R. Pereira, A.M.T. Silva, O.C. Nunes, C.M. Manaia, Ozonation and UV254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater, J. Hazard. Mater., 323 (2017) 434–441.
  42. R.J. Watts, S.H. Kong, M.P. Orr, C.G. Miller, B.E. Henry, Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent, Water Res., 29 (1995) 95–100.
  43. R. Bianchini, L. Calucci, C. Lubello, C. Pinzino, Intermediate free radicals in the oxidation of wastewaters, Res. Chem. Intermed., 28 (2002) 247–256.
  44. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol., A, 160 (1997) 51–56.
  45. P. Rusin, S. Maxwell, C. Gerba, Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage, J. Appl. Microbiol., 93 (2002) 585–592.
  46. S. Kim, K. Ghafoor, J.Y. Lee, M. Feng, J.Y. Hong, D.-U. Lee, J.Y. Park, Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis, Water Res., 47 (2013) 4403–4411.
  47. N. Czekalski, R. Sigdel, J. Birtel, B. Matthews, H. Bürgmann, Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes, Environ. Int., 81 (2015) 45–55.
  48. G. Pak, D.E. Salcedo, H. Lee, J. Oh, S.K. Maeng, K.G. Song, S.W. Hong, H.C. Kim, K. Chandran, S. Kim, Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations, Environ. Sci. Technol., 50 (2016) 7590–7600.
  49. Y. Zhuang, H.Q. Ren, J.J. Geng, Y.Y. Zhang, Y. Zhang, L. Ding, K. Xu, Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection, Environ. Sci. Pollut. Res., 22 (2015) 7037–7044.
  50. M.B. Fisher, K.L. Nelson, Inactivation of Escherichia coli by polychromatic simulated sunlight: evidence for and implications of a Fenton mechanism involving iron, hydrogen peroxide, and superoxide, Appl. Environ. Microbiol., 80 (2014) 935–942.
  51. J. Rodríguez-Chueca, A. Mediano, M.P. Ormad, R. Mosteo, J.L. Ovelleiro, Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields, Water Res., 60 (2014) 250–258.
  52. A. Acra, M. Jurdi, A.M.U. Allem, Y. Karahagopian, Z. Raffoul, Sunlight as disinfectant, Lancet, 333 (1989) 280.
  53. M.M. Lyons, P. Aas, J.D. Pakulski, L. Van Waasbergen, R.V. Miller, D.L. Mitchell, W.H. Jeffrey, DNA damage induced by ultraviolet radiation in coral-reef microbial communities, Mar. Biol., 130 (1998) 537–543.
  54. L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Dolic, W. Gernjak, E. Heath, I. Ivancev-Tumbas, P. Karaolia, A.R. Lado Ribeiro, G. Mascolo, C.S. McArdell, H. Schaar, A.M.T. Silva, D. Fatta-Kassinos, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655 (2019) 986–1008.