References

  1. C. Sawyer, P. McCarty, G. Parkin, Chemistry for Environmental Engineering and Science, The McGraw-Hill Series in Civil and Environmental Engineering, New York, 2013.
  2. M. Malakootian, N. Yousefi, The efficiency of electrocoagulation process using aluminum electrodes in removal of hardness from water, Iran. J. Environ. Health Sci. Eng., 6 (2009) 131–136.
  3. N.N.N. Mahasti, Y.-J. Shih, X.-T. Vu, Y.H. Huang, Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) process, J. Taiwan Inst. Chem. Eng., 78 (2017) 378–385.
  4. G.O. El-Sayed, Removal of water hardness by adsorption on peanut hull, J. Int. Environ. Appl. Sci., 5 (2010) 47–55.
  5. B.Y. Wang, H. Lin, X.H. Guo, P. Bai, Boron removal using chelating resins with pyrocatechol functional groups, Desalination, 347 (2014) 138–143.
  6. A.E. Yilmaz, R. Boncukcuoğlu, M.M. Kocakerim, B. Keskinler, The investigation of parameters affecting boron removal by electrocoagulation method, J. Hazard. Mater., 125 (2005) 160–165.
  7. N. Öztürk, T.E. Köse, Boron removal from aqueous solutions by ion-exchange resin: batch studies, Desalination, 227 (2008) 233–240.
  8. K.L. Tu, L.D. Nghiem, A.R. Chivas, Boron removal by reverse osmosis membranes in seawater desalination applications, Sep. Purif. Technol., 75 (2010) 87–101.
  9. D. Kavak, Boron adsorption by clinoptilolite using factorial design, Environ. Prog. Sustainable Energy, 30 (2011) 527–532.
  10. D. Kavak, Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design, J. Hazard. Mater., 163 (2009) 308–314.
  11. B. Ozbey-Unal, D.Y. Imer, B. Keskinler, I. Koyuncu, Boron removal from geothermal water by air gap membrane distillation, Desalination, 433 (2018) 141–150.
  12. M. Bryjak, J. Wolska, N. Kabay, Removal of boron from seawater by adsorption–membrane hybrid process: implementation and challenges, Desalination, 223 (2008) 57–62.
  13. M. Korkmaz, C. Özmetin, B.A. Fil, Modelling of boron removal from solutions using Purolite S 108 in a batch reactor, CLEAN– Soil Air Water, 44 (2016) 949–958.
  14. M.V. Duman, E. Özmetin, Boron removal from waste water originating in the open pit mines of Bigadiç Boron Work by means of reverse osmosis, Int. J. Global Warm., 6 (2014) 252–269.
  15. S.H. Wang, Y. Zhou, C.J. Gao, Novel high boron removal polyamide reverse osmosis membranes, J. Membr. Sci., 554 (2018) 244–252.
  16. M.H. Isa, E.H. Ezechi, Z. Ahmed, S.F. Magram, S.R.M. Kutty, Boron removal by electrocoagulation and recovery, Water Res., 51 (2014) 113–123.
  17. S.L. Zhi, S.T. Zhang, A novel combined electrochemical system for hardness removal, Desalination, 349 (2014) 68–72.
  18. A. Gunay, Application of nonlinear regression analysis for ammonium exchange by natural (Bigadiç) clinoptilolite, J. Hazard. Mater., 148 (2007) 708–713.
  19. A. Demir, A. Gunay, E. Debik, Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, Water SA, 28 (2002) 329–336.
  20. A. Arslan, E. Topkaya, D. Bingöl, S. Veli, Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach, Sustainable Environ. Res., 28 (2018) 65–71.
  21. E. Ozmetin, E. Calgan, Y. Suzen, M. Korkmaz, C. Ozmetin, Optimisation of textile industry wastewater treatment using bigadic zeolite (clinoptilolite) by response surface methodology, J. Environ. Prot. Ecol., 18 (2017) 1127–1136.
  22. N. Bin Darwish, V. Kochkodan, N. Hilal, Boron removal from water with fractionized Amberlite IRA743 resin, Desalination, 370 (2015) 1–6.
  23. M.M. Momeni, D. Kahforoushan, F. Abbasi, S. Ghanbarian, Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: optimization through RSM design, J. Environ. Manage., 211 (2018) 347–355.
  24. N. Birjandi, H. Younesi, N. Bahramifar, S. Ghafari, A.A. Zinatizadeh, S. Sethupathi, Optimization of coagulation–flocculation treatment on paper-recycling wastewater: application of response surface methodology, J. Environ. Sci. Health., Part A, 48 (2013) 1573–1582.
  25. M.C. RAND, Standard Methods for the Examination of Water and Wastewater, Prepared and Published Jointly by American Public Health Association, American Water Works Association, Water Pollution Control Federation, United States, 1976.
  26. A. Fakhri, Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology, Process Saf. Environ. Prot., 93 (2015) 1–8.