References

  1. EUROSTAT, Waste Statistics: Statistics Explained, 2018, Available at: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1183.pdf (accessed on 23.04.2019).
  2. Directive 2008/98/EC, Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, Official Journal of the European Union, L 312, ISSN 1725-2555, Vol. 51, 22.11.2008.
  3. A. Pawelczyk, EU Policy and Legislation on Recycling of Organic Wastes to Agriculture, A. Krynski, R. Wrzesien, Eds., XIIth ISAH 2005, Animals and Environment, Vol. 1, International Congress Proceedings, Warshaw, Poland, 4–8 September 2005.
  4. H. Van de Wiel, A European Directive on Biowaste?, 2009, Available at: http://www.wastematters.eu/uploads/media/European_biowaste_directive.pdf (accessed on 30.04.19).
  5. Council Directive 99/31/EC, Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste, Official Journal of the European Communities, L 181, ISSN 0378-6978, Vol. 42, 16.07.1999.
  6. Commission of the European Communities (CEC), Green Paper, On the Management of Bio-waste in the European Union, SEC (2008) 2936, COM (2008) 811 Final, Brussels, 2008.
  7. H. Saveyn, P. Eder, End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost and Digestable): Technical Proposals, Final Report, European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Sevilla, Spain, 2014, Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC87124/eow%20biodegradable%20waste%20final%20report.pdf (accessed on 30.04.19).
  8. European Commission (EC), Biodegradable Waste, 2016, Available at: http://ec.europa.eu/environment/waste/compost/index.htm (accessed on 23.04.2019).
  9. European Commission (EC), Biodegradable Waste, Developments, 2016, Available at: http://ec.europa.eu/environment/waste/compost/developments.htm (accessed on 23.04.2019).
  10. J.N. Galloway, J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowing, B.J. Cosby, The nitrogen cascade, Bioscience, 53 (2003) 341–356.
  11. J. Mateo-Sagasta, J. Burke, SOLAW Background Thematic Report-TR08, Agriculture and Water Quality Interactions: A Global Overview, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2008.
  12. M.O. Rivett, S.R. Buss, P. Morgan, J.W.N. Smith, C.D. Bemment, Nitrate attenuation in groundwater: a review of biogeochemical controlling processes, Water Res., 42 (2008) 4215–4232.
  13. World Health Organization (WHO), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, E & FN Spon, London, 1999.
  14. Drinking Water Directive 98/83/EC, Council Directive 98/83/ EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, Official Journal of the European Communities, L 330, ISSN 0378-6988, Vol. 41, 05.12.1998.
  15. World Health Organization (WHO), Guidelines for Drinking Water Quality, 3rd ed., WHO, Geneva, 2004.
  16. Directive 2000/60/EC, Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy, Official Journal of the European Communities, L 327, ISSN 0378-6978, Vol. 43, 22.12.2000.
  17. Directive 91/676/EEC, Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources, Official Journal of the European Communities, L 375, ISSN 0378-6978, Vol. 34, 31.12.1991.
  18. M.F. Knapp, Diffuse pollution threats to groundwater: a UK water company perspective, Q. J. Eng. Geol. Hydrogeol., 38 (2005) 39–51.
  19. Department of Environment, Food and Rural Affairs (Defra), Post-Conciliation Partial Regulatory Impact Assessment, Groundwater Proposals Under Article 17 of the Water Framework Directive, Draft Final Report, Defra, London, 2006.
  20. S.M. Hosseini, T. Tosco, Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer, J. Contam. Hydrol., 179 (2015) 182–195.
  21. Z. Yao, C. Wang, N. Song, H. Jiang, Development of a hybrid biofilm reactor for nitrate removal from surface water with macrophyte residues as carbon substrate, Ecol. Eng., 128 (2019) 1–8.
  22. A. Nordström, R. Herbert, Identification of the temporal control on nitrate removal rate variability in a denitrifying woodchip bioreactor, Ecol. Eng., 127 (2019) 88–95.
  23. S. Satake, C. Tang, Groundwater nitrate remediation using plant-chip bioreactors under phosphorus-limited environment, J. Contam. Hydrol., 209 (2018) 42–50.
  24. K. Addy, A.J. Gold, L.E. Christianson, M.B. David, L.A. Schipper, N.A. Ratigan, Denitrifying bioreactors for nitrate removal: a meta-analysis, J. Environ. Qual., 45 (2016) 873–881.
  25. S. Tangsir, H. Moazed, A.A. Naseri, S.E.H. Garmdareh, S. Broumand-nasab, A. Bhatnagar, Investigation on the performance of sugarcane bagasse as a new carbon source in two hydraulic dimensions of denitrification beds, J. Cleaner Prod., 140 (2017) 1176–1181.
  26. B. Krause Camilo, A. Matzinger, N. Litz, L.P. Tedesco, G. Wessolek, Concurrent nitrate and atrazine retention in bioreactors of straw and bark mulch at short hydraulic residence times, Ecol. Eng., 55 (2013) 101–113.
  27. S.G. Cameron, L.A. Schipper, Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds, Ecol. Eng., 36 (2010) 1588–1595.
  28. J. Wang, L. Chu, Biological nitrate removal from water and wastewater by solid-phase denitrification process, Biotechnol. Adv., 34 (2016) 1103–1112.
  29. E.A. Martin, M.P. Davis, T.B. Moorman, T.M. Isenhart, M.L. Soupir, Impact of hydraulic residence time on nitrate removal in pilot woodchip bioreactors, J. Environ. Manage., 237 (2019) 424–432.
  30. J. Malá, Z. Bílková, K. Hrich, M. Kriška, M. Šereš, Sustainability of denitrifying bioreactors with various fill media, Plant Soil Environ., 63 (2017) 442–448.
  31. M. Healy, T.G. Ibrahim, G.J. Lanigan, A.J. Serrenho, O. Fenton, Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors, Ecol. Eng., 40 (2012) 198–209.
  32. T. Hou, N. Chen, S. Tong, B. Li, Q. He, C. Feng, Enhancement of rice bran as carbon and microbial sources on the nitrate removal from groundwater, Biochem. Eng. J., 148 (2019) 185–194.
  33. R. Hu, X. Zheng, T. Zheng, J. Xin, H. Wang, Q. Sun, Effects of carbon availability in a woody carbon source on its nitrate removal behaviour in solid-phase denitrification, J. Environ. Manage., 246 (2019) 832–839.
  34. M. Šereš, K.A. Mocová, J. Moradi, M. Kriška, V. Kočí, T. Hnátková, The impact of woodchip-gravel mixture on the efficiency and toxicity of denitrification bioreactors, Sci. Total Environ., 647 (2019) 888–894.
  35. Food and Agriculture Organization of the United Nations (FAO), Hazelnut Production, 2019, Available at: http://www.fao.org/3/x4484e/x4484e03.htm (accessed on 30.04.19).
  36. K. Chang, World Tea Production and Trade Current and Future Development 2015, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2015, Available at: http://www.fao.org/3/a-i4480e.pdf (accessed on 30.04.19).
  37. Turkish Statistical Institute, Nuts 1988–2018, TUIK [Online], 2019, Available at: www.tuik.gov.tr/PreTablo.do?alt_id=1001 (accessed on 23.04.19).
  38. O.H. Dede, G. Dede, S. Ozdemir, M. Abad, Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation, J. Plant Nutr., 34 (2011) 1973–1984.
  39. Turkish Statistical Institute, Tea Production 1988–2018, TUIK [Online], 2019, Available at: www.tuik.gov.tr/PreTablo.do?alt_ id=1001 (accessed on 23.04.19).
  40. E. Malkoc, Y. Nuhoglu, Investigation of nickel(II) removal from aqueous solutions using tea factory waste, J. Hazard. Mater., B127 (2005) 120–128.
  41. O. Gibert, S. Pomierny, I. Rowe, R.M. Kalin, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB), Bioresour. Technol., 99 (2008) 7587–7596.
  42. L.A. Schipper, W.D. Robertson, A.J. Gold, D.B. Jaynes, S.C. Cameron, Denitrifying bioreactors–an approach for reducing nitrate loads to receiving waters, Ecol. Eng., 36 (2010) 1532–1543
  43. E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, L. Philippot, Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland, Appl. Environ. Microbiol., 72 (2006) 5957–5962.
  44. S. Henry, E. Baudoin, J.C. López-Gutiérrez, F. Martin-Laurent, A. Brauman, L. Philippot, Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR, J. Microbiol. Methods, 69 (2004) 327–335.
  45. D.W. Graham, C. Trippett, W.K. Dodds, J.M. O’Brien, E.B.K. Banner, I.M. Head, M.S. Smith, R.K. Yang, C.W. Knapp, Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams, Environ. Pollut., 158 (2010) 3225–3229.
  46. J. Zhang, C. Feng, S. Hong, H. Hao, Y. Yang, Behaviour of solid carbon sources for biological denitrification in groundwater remediation, Water Sci. Technol., 65 (2012) 1696–1704.
  47. R.G. McLaughlan, O. Al-Mashawbeh, Effect of media type and particle size on dissolved organic carbon release from woody filter media, Bioresour. Technol., 100 (2009) 1020–1023.
  48. W.J. Saliling, P.W. Westerman, T.M. Losordo, Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations, Aquacult. Eng., 37 (2007) 222–233.
  49. B.S. Lee, K. Lee, J.Y. Um, K. Nam, Slowly released molasses barrier system for controlling nitrate plumes in groundwater: a pilot-scale tank study, Chemosphere, 97 (2014) 135–139.
  50. V. Grießmeier, J. Gescher, Influence of the potential carbon sources for field denitrification beds on their microbial diversity and fate of carbon and nitrate, Front. Microbiol., 9 (2018) 1313.
  51. L. Chu, J. Wang, Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source, Chemosphere, 91 (2013) 1310–1316.
  52. L.J. Feng, L. Zhu, Q. Yang, G.F. Yang, J. Xu, X.Y. Xu, Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition, Bioresour. Technol., 129 (2013) 274–280.
  53. J. Zhao, C. Feng, S. Tong, N. Chen, S. Dong, T. Peng, Denitrification behaviour and microbial community spatial distribution inside woodship-based solid-phase denitrification (W-SPD) bioreactor for nitrate-contaminated water treatment, Bioresour. Technol., 249 (2018) 869–879.
  54. S. Warneke, L.A. Schipper, M.G. Matiasek, K.M. Scow, S. Cameron, D.A. Bruesewitz, I.R. Mc Donald, Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds, Water Res., 45 (2011) 5463–5475.
  55. L.M. Long, L.A. Schipper, D.A. Bruesewitz, Long-term nitrate removal in a denitrification wall, Agric. Ecosyst. Environ., 140 (2011) 514–520.
  56. C.M. Greenan, T.B. Moorman, T.C. Kaspar, T.B. Parkin, D.B. Jaynes, Comparing carbon substrates for denitrification of subsurface drainage water, J. Environ. Qual., 35 (2006) 824–829.
  57. L.A. Schipper, S.C. Cameron, S. Warneke, Nitrate removal from three different effluents using large-scale denitrification beds, Ecol. Eng., 36 (2010) 1552–1557.
  58. W.D. Robertson, Nitrate removal rates in woodchip media of varying age, Ecol. Eng., 36 (2010) 1581–1587.