References

  1. R. Burgos-Castillo, M. Sillanpää, E. Brillas, I. Sirés, Removal of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatment, Sci. Total Environ., 644 (2018) 173–182.
  2. A. Uysal, D. Tuncer, Optimisation of nutrients and metals release from municipal sewage sludge by chemical extraction using Box-Behnken design, Int. J. Global Warming, 11 (2017) 317–327.
  3. J. Tang, J.G. He, T.T. Liu, X.D. Xin, Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism, RSC Adv., 7 (2017) 33385–33401.
  4. S. Ozturk, T. Kaya, B. Aslim, S. Tan, Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production, J. Hazard. Mater., 231–232 (2012) 64–69.
  5. Z.F. Liu, Z.G. Li, H. Zhong, G.M. Zeng, Y.S. Liang, M. Chen, Z.B. Wu, Y.Y. Zhou, M.D. Yu, B.B. Shao, Recent advances in the environmental applications of biosurfactant saponins: a review, J. Environ. Chem. Eng., 5 (2017) 6030–6038.
  6. J. Tang, J.G. He, T.T. Liu, X.D. Xin, Extraction and environmental risk assessment of heavy metal in the municipal dewatered sludge using rhamnolipid treatment, Hum. Ecol. Risk Assess., 23 (2017) 1522–1538.
  7. L. Gao, N. Kano, Y. Sato, C. Li, S. Zhang, H. Imaizumi, Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application, Bioinorg. Chem. Appl., (2012) 1–11, http://dx.doi. org/10.1155/2012/173819.
  8. X. Yi, K. Luo, Q. Yang, X.M. Li, W.G. Deng, H.B. Cheng, Z.L. Wang, G.M. Zeng, Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid, Appl. Biochem. Biotechnol., 171 (2013) 1416–1428.
  9. K. Luo, Q. Ye, X. Yi, Q. Yang, X.M. Li, H.B. Chen, X. Liu, G.M. Zeng, Hydrolysis and acidification of waste-activated sludge in the presence of biosurfactant rhamnolipid: effect of pH, Appl. Microbiol. Biotechnol., 97 (2013) 5597–5604.
  10. X.F. Huang, C.M. Shen, J. Liu, L.J. Lu, Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants, Chem. Eng. J., 264 (2015) 280–290.
  11. Y. Yu, Z. Lei, T. Yuan, Y. Jiang, N. Chen, C. Feng, K. Shimizu, Z. Zhang, Simultaneous phosphorus and nitrogen recovery from anaerobically digested sludge using a hybrid system coupling hydrothermal pretreatment with MAP precipitation, Bioresour. Technol., 243 (2017) 637–640.
  12. J.D. Doyle, S.A. Parsons, Struvite formation, control and recovery, Water Res., 36 (2002) 3925–3940.
  13. A. Uysal, D. Tuncer, E. Kir, T.S. Köseoğlu, Recovery of nutrients from digested sludge as struvite with a combination process of acid hydrolysis and Donnan dialysis, Water Sci. Technol., 76 (2017) 2733–2741.
  14. Y.W. Wang, Q.C. Xiao, H. Zhong, X. Zheng, Y.S. Wei, Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment, J. Environ. Sci., 39 (2016) 29–36.
  15. E. Kiliç, J. Font, R. Puig, S. Çolak, D. Çelik, Chromium recovery from tannery sludge with saponin and oxidative remediation, J. Hazard. Mater., 185 (2011) 456–462.
  16. Sigma-Aldrich, Saponin Quillaja Product Information, USA, Available at: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/s4521pis.pdf.
  17. G.T. Kwon, J.Y. Kang, J.-H. Nam, Y.-O. Kim, D.J. Jahng, Struvite production from anaerobic digestate of piggery wastewater using ferronickel slag as a magnesium source, Environ. Technol., (2019), doi: 10.1080/09593330.2019.1631390 (In Press).
  18. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association and Water Environment Federation, 2005.
  19. A. Uysal, Y.D. Yilmazel, G.N. Demirer, The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester, J. Hazard. Mater., 181 (2010) 248–254.
  20. N. Hidayeti, T. Surtiningsih, Ni’matuzahroh, Removal of heavy metals Pb, Zn and Cu from sludge waste of paper industries using biosurfactant, J. Biorem. Biodegrad., 5 (2014) 255–257.
  21. L. Gao, N.K. Kano, H. Imaizumi, Concentration and chemical speciation of heavy metals in sludge and removal of metals by bio-surfactants application, J. Chem. Chem. Eng., 7 (2013) 1188–1202.
  22. B. Cieślik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. the concept of “no solid waste generation” and analytical methods, J. Cleaner Prod., 142 (2017) 1728–1740.
  23. A.A. Rouff, G.A. Lager, D. Arrue, J. Jaynes, Trace elements in struvite equine enteroliths: concentration, speciation and influence of diet, J. Trace Elem. Med. Biol., 45 (2018) 23–30.
  24. R. Guan, X. Yuan, Z. Wu, H. Wang, L. Jiang, Y. Li, G. Zeng, Functionality of surfactants in waste-activated sludge treatment: a review, Sci. Total Environ., 609 (2017) 1433–1442.
  25. Y.Y. Ye, H.H. Ngo, W.S. Guo, Y.W. Liu, J.X. Li, Y. Liu, X.B. Zhang, H. Jia, Insight into chemical phosphate recovery from municipal wastewater, Sci. Total Environ., 576 (2017) 159–171.
  26. P. Battistoni, A. De Angelis, M. Prisciandaro, R. Boccadoro, D. Bolzonella, P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling, Water Res., 36 (2002) 1927–1938.