References

  1. Q. Shi, W. Zhao, L. Xie, J. Chen, M. Zhang, Y. Li, Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O2 all-solid state Z-scheme system, J. Alloys Compd., 662 (2016) 108–117.
  2. A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications, Appl. Catal., A, 555 (2018) 47–74.
  3. P.M. Rao, L.L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P.D. Yang, X.L. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett., 14 (2014) 1099–1105.
  4. L. Li, B. Yan, BiVO4/Bi2O3 submicrometer sphere composite: microstructure and photocatalytic activity under visible-light irradiation, J. Alloys Compd., 476 (2009) 624–628.
  5. L. Zhang, G. Tann, S. Wei, H. Ren, A. Xia, Y. Luo, Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts, Ceram. Int., 39 (2013) 8597–8604.
  6. N. Wetchakun, S. Chainet, S. Phanichphant, K. Wetchakun, Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceram. Int., 41 (2015) 5999–6004.
  7. O. Monfort, T. Roch, M. Gregor, L. Satrapinskyy, D. Raptis, P. Lianos, G. Plesch, Photooxidative properties of various BiVO4/TiO2 layered composite films and study of their photocatalytic mechanism in pollutant degradation, J. Environ. Chem. Eng., 5 (2017) 5143–5149.
  8. W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Appl. Catal., B, 134 (2013) 293–301.
  9. S. Min, F. Wang, Z. Jin, J. Xu, Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation, Superlattices Microstruct., 74 (2014) 294–307.
  10. E. Aguilera-Ruiz, U.M. García-Pérez, M.D.L. Garza-Galván, P. Zambrano-Robledo, B. Bermúdez-Reyes, J. Peral, Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation, Appl. Surf. Sci., 328 (2015) 361–367.
  11. S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts, Mater. Res. Bull., 54 (2014) 28–33.
  12. Y. Geng, P. Zhang, S. Kuang, Fabrication and enhanced visible light photocatalytic activities of BiVO4/Bi2WO6 composites, RSC Adv., 4 (2014) 46054–46059.
  13. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, Y. Wang, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity, Chem. Eng. J., 236 (2014) 430–437.
  14. L. Chen, D. Meng, X. Wu, A. Wang, J. Wang, M. Yu, Y. Liang, Enhanced visible light photocatalytic performances of selfassembled hierarchically structured BiVO4/Bi2WO6 heterojunction composites with different morphologies, RSC Adv., 6 (2016) 52300–52309.
  15. L. Chen, Q. Zhang, R. Huang, S. Yin, S. Luo, C.T. Au, Porous peanut-like Bi2O3–BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties, Dalton Trans., 41 (2012) 9513–9518.
  16. M. Mao, F. Chen, C. Zheng, J. Ning, Y. Zhong, Y. Hu, Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol, J. Alloys Compd., 688 (2016) 1080–1087.
  17. P. Qiu, B. Park, J. Choi, M. Cui, J. Kim, J. Khim, BiVO4/Bi2O3 heterojunction deposited on graphene for an enhanced visiblelight photocatalytic activity, J. Alloys Compd., 706 (2017) 7–15.
  18. J. Sun, X. Li, Q. Zhao, M.O. Tadé, S. Liu, Construction of p-n heterojunction b-Bi2O3/BiVO4 nanocomposite with improved photoinduced charge transfer property and enhanced activity in degradation of ortho-dichlorobenzene, Appl. Catal., B, 219 (2017) 259–268.
  19. Y. Lee, M. Cui, J. Choi, J. Kim, Y. Son, J. Khim, Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in real-field soil by an integrated visible-light photocatalysis and solvent migration system with p-n heterojunction BiVO4/Bi2O3, J. Hazard. Mater., 344 (2018) 1116–1125.
  20. A. Malathi, V. Vasanthakumar, P. Arunachalam, J. Madhavan, M.A. Ghanem, A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible-light induced photocatalytic activity, J. Colloid Interface Sci., 506 (2017) 553–563.
  21. S. Selvarajan, A. Suganthi, M. Rajarajan, K. Arunprasath, Highly efficient BiVO4/WO3 nanocomposite towards superior photocatalytic performance, Powder Technol., 307 (2017) 203–212.
  22. U. Lamdab, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, In VO4–BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue, Catal. Today, 278 (2016) 291–302.
  23. C. Lai, M. Zhang, B. Li, D. Huang, G. Zeng, L. Qin, X. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight, Chem. Eng. J., 358 (2019) 891–902.
  24. D. Lv, D. Zhang, X. Pu, D. Kong, Z. Lu, X. Shao, H. Ma, J. Dou, One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 174 (2017) 97–103.
  25. L. Song, Y. Pang, Y. Zheng, C. Chen, L. Ge, Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method, J. Alloys Compd., 710 (2017) 375–382.
  26. S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem., C, 116 (2012) 26306–26312.
  27. K. Su, Z.H. Ai, L.Z. Zhang, Efficient visible light-driven photocatalytic degradation of pentachlorophenol with Bi2O3/TiO2–xBx, J. Phys. Chem. C, 116 (2012) 17118–17123.
  28. M. Su, C. He, V.K. Sharma, M.A. Asi, D. Xia, X.Z. Li, H. Deng, Y. Xiong, Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light, J. Hazard. Mater., 211–212 (2012) 95–103.
  29. Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol., A, 172 (2005) 47–54.
  30. M.S. Gui, W.D. Zhang, Q.X. Su, C.H. Chen, Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, J. Solid State Chem., 184 (2011) 1977–1982.
  31. H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation, J. Phys. Chem. C, 118 (2014) 14379–14387.
  32. Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, S. Song, BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation, J. Phys. Chem. C, 118 (2014) 389–398.
  33. H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal., B, 170–171 (2015) 206–214.
  34. J. Su, X. Zou, G.D. Li, X. Wei, C. Yan, Y.N. Wang, J. Zhao, L.J. Zhou, J.S. Chen, Macroporous V2O5−BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges, J. Phys. Chem. C, 115 (2011) 8064–8071.
  35. X. Zhang, L.Z. Zhang, T.F. Xie, D.J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C, 113 (2009) 7371–7378.
  36. X. Ding, K. Zhao, L. Zhang, Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions, Environ. Sci. Technol., 48 (2014) 5823–5831.
  37. Z.Q. Li, X.T. Chen, Z.L. Xue, Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite, J. Colloid Interface Sci., 394 (2013) 69–77.
  38. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches, J. Mol. Catal. A: Chem., 423 (2016) 533–549.
  39. H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst, ACS Appl. Mater. Interfaces, 4 (2012) 4853–4857.
  40. G. He, C. Xing, X. Xiao, R. Hu, X. Zuo, J. Nan, Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol, Appl. Catal., B, 170–171 (2015) 1–9.
  41. N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediatorfree direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity, Dalton Trans., 44 (2015) 4297–4307.