References

  1. A. Nasar, F. Mashkoor, Application of polyaniline-based adsorbents for dye removal from water and wastewater — a review, Environ. Sci. Pollut. Res., 26 (2019) 5333–5356.
  2. Y. Chen, P. Pötschke, J. Pionteck, B. Voit, H.S. Qi, Fe3O4 nanoparticles grown on cellulose/GO hydrogels as advanced catalytic materials for the heterogeneous fenton-like reaction, ACS Omega, 4 (2019) 5117–5125.
  3. A.L. Zhang, L.Y. Zhu, Z.D. Nan, Ni-doped Fe3O4 nanoparticles coupled with SnS2 nanosheets as 0D/2D heterogeneous catalyst for photo-Fenton reaction, Mater. Chem. Phys., 224 (2019) 156–168.
  4. L.J. Xu, Y.J. Yang, W.Y. Li, Y.J. Tao, Z.G. Sui, S. Song, J. Yang, Three-dimensional macroporous graphene-wrapped zerovalent copper nanoparticles as efficient micro-electrolysispromoted Fenton-like catalysts for metronidazole removal, Sci. Total Environ., 658 (2019) 219–233.
  5. L. Wang, J.J. Hou, S.Z. Liu, A.J. Carrier, T. Guo, Q.S. Liang, D. Oakley, X. Zhang, CuO nanoparticles as haloperoxidase-mimics: chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing, Sens. Actuators, B, 287 (2019) 180–184.
  6. A. Hassani, G. Çelikdağ, P. Eghbali, M. Sevim, S. Karaca, Ö. Metin, Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution, Ultrason. Sonochem., 40 (2018) 841–852.
  7. J.F. Qu, T.H. Che, L.B. Shi, Q.H. Lu, S.T. Qi, A novel magnetic silica supported spinel ferrites NiFe2O4 catalyst for heterogeneous Fenton-like oxidation of rhodamine B, Chin. Chem. Lett., 30 (2019) 1198–1203.
  8. Y.F. Diao, Z.K. Yan, M. Guo, X.D. Wang, Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore, J. Hazard. Mater., 344 (2018) 829–838.
  9. M.R. Heidari, R.S. Varma, M. Ahmadian, M. Pourkhosravani, S.N. Asadzadeh, P. Karimi, M. Khatami, Photo-Fenton like catalyst system: activated Carbon/CoFe2O4 nanocomposite for reactive dye removal from textile wastewater, Appl. Sci., 9 (2019) 963.
  10. W. Wang, Q. Zhu, F. Qin, Q.G. Dai, X.Y. Wang, Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid, Chem. Eng. J., 333 (2018) 226–239.
  11. A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad, M. Pannipara, Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light, Res. Phys., 8 (2018) 1046–1053.
  12. P.A. Vinosha, S.J. Das, Investigation on the role of pH for the structural, optical and magnetic properties of cobalt ferrite nanoparticles and its effect on the photo-Fenton activity, Mater. Today:. Proc., 5 (2018) 8662–8671.
  13. L.X. Zhang, Y.X. Sun, W.B. Jia, S.S. Ma, B. Song, Y. Li, H.F. Jiu, J.W. Liu, Multiple shell hollow CoFe2O4 spheres: synthesis, formation mechanism and properties, Ceram. Int., 40 (2014) 8997–9002.
  14. X.F. Wu, W. Wang, F. Li, S. Khaimanov, N. Tsidaeva, M. Lahoubi, PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes, Appl. Surf. Sci., 389 (2016) 1003–1011.
  15. M.P. Reddy, A.M.A. Mohamed, X.B. Zhou, S. Du, Q. Huang, A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres, J. Magn. Magn. Mater., 388 (2015) 40–44.
  16. B. Paul, D.D. Purkayastha, S.S. Dhar, One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid, Mater. Chem. Phys., 181 (2016) 99–105.
  17. M. Vadivel, R.R. Babu, K. Sethuraman, K. Ramamurthi, M. Arivanandhan, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method, J. Magn. Magn. Mater., 362 (2014) 122–129.
  18. M. Vadivel, R.R. Babu, K. Ramamurthi, M. Arivanandhan, CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles, Ceram. Int., 42 (2016) 19320–19328.
  19. S. Ayyappan, J. Philip, B. Raj, A facile method to control the size and magnetic properties of CoFe2O4 nanoparticles, Mater. Chem. Phys., 115 (2009) 712–717.
  20. K. Praveena, B. Radhika, S. Srintah, Size effects on structural and magnetic properties of CoFe2O4 nanoparticles prepared by co-precipitation method, AIP Conf. Proc., 1447 (2012) 289–290.
  21. M. Vadivel, R.R. Babu, K. Ramamurthi, M. Arivanandhan, Effect of PVP concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles, Nano-Struct. Nano-Objects, 11 (2017) 112–123.
  22. M. Vadivel, R.R. Babu, M. Arivanandhan, K. Ramamurthi, Y. Hayakawa, Role of SDS surfactant concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 nanoparticles, RSC Adv., 5 (2015) 27060–27068.
  23. W.Y. Fu, S.K. Liu, W.H. Fan, H.B. Yang, X.F. Pang, J. Xu, G.T. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property, J. Magn. Magn. Mater., 316 (2007) 54–58.
  24. Z. Ding, W. Wang, Y.J. Zhang, F. Li, J.P. Liu, Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles, J. Alloys Compd., 640 (2015) 362–370.
  25. J.K. Rajput, G. Kaur, CoFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature, Chin. J. Catal., 34 (2013) 1697–1704.
  26. L.L. Lv, Q. Xu, R. Ding, L. Qi, H.Y. Wang, Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors, Mater. Lett., 111 (2013) 35–38.
  27. H.X. Zhang, H.R. Li, Z.J. Wang, B. Li, X.W. Cheng, Q.F. Cheng, Synthesis of magnetic CoFe2O4 nanoparticles and their efficient degradation of diclofenac by activating persulfate via formation of sulfate radicals, J. Nanosci. Nanotechnol., 18 (2018) 6942–6948.
  28. R. Qin, F. Li, W. Jiang, L. Liu, Salt-assisted low temperature solid state synthesis of high surface area CoFe2O4 nanoparticles, J. Mater. Sci. Technol., 25 (2009) 69–72.
  29. Z. Jiao, X. Geng, M.H. Wu, Y. Jiang, B. Zhao, Preparation of CoFe2O4 nanoparticles by spraying co-precipitation and structure characterization, Colloids Surf., A, 313 (2008) 31–34.
  30. K.K. Senapati, C. Borgohain, P. Phukan, Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium, J. Mol. Catal. A: Chem., 339 (2011) 24–31.
  31. A.A. Al-Kahtani, M.F.A. Taleb, Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation, J. Hazard. Mater., 309 (2016) 10–19.
  32. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Res. Lett., 12 (2017) 143.
  33. H.Y. Li, Y.L. Li, L.J. Xiang, Q.Q. Huang, J.J. Qiu, H. Zhang, M.V. Sivaiah, F. Baron, J. Barrault, S. Petit, S. Valange, Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation, J. Hazard. Mater., 287 (2015) 32–41.
  34. A. Khataee, P. Gholami, B. Vahid, Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation, J. Ind. Eng. Chem., 50 (2017) 86–95.
  35. F.F. Dias, A.A.S. Oliveira, A.P. Arcanjo, F.C.C. Moura, J.G.A. Pacheco, Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton, Appl. Catal., B, 186 (2016) 136–142.
  36. H.C. Lan, A.M. Wang, R.P. Liu, H.J. Liu, J.H. Qu, Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber, J. Hazard. Mater., 285 (2015) 167–172.
  37. Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment, Appl. Catal., B, 204 (2017) 537–547.
  38. X.G. Shi, A. Tian, J.H. You, H. Yang, Y.Z. Wang, X.X. Xue, Degradation of organic dyes by a new heterogeneous Fenton reagent-Fe2GeS4 nanoparticle, J. Hazard. Mater., 353 (2018) 182–189.
  39. Y. Ahmed, Z. Yaakob, P. Akhtar, Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation, Catal. Sci. Technol., 6 (2016) 1222–1232.
  40. X.X. Tang, Y. Liu, Heterogeneous photo-Fenton degradation of methylene blue under visible irradiation by iron tetrasulphophthalocyanine immobilized layered double hydroxide at circumneutral pH, Dyes Pigm., 134 (2016) 397–408.
  41. J. Zhang, F.-T. Hu, Q.-Q. Liu, X. Zhao, S.-Q. Liu, Application of heterogenous catalyst of tris(1,10)-phenanthroline iron(II) loaded on zeolite for the photo-Fenton degradation of methylene blue, React. Kinet. Mech. Lett., 103 (2011) 299–310.
  42. F. Ji, C.L. Li, J.H. Zhang, L. Deng, Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst, J. Hazard. Mater., 186 (2011) 1979–1984.
  43. K. Chanderia, S. Kumar, J. Sharma, R. Ameta, P.B. Punjabi, Degradation of Sunset Yellow FCF using copper loaded bentonite and H2O2 as photo-Fenton like reagent, Arabian J. Chem., 10 (2017) S205–S211.
  44. B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S. Jorfi, Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: mechanism, kinetic and feasibility studies, J. Taiwan Inst. Chem. Eng., 96 (2019) 329–340.
  45. J. Singh, S. Sharma, Aanchal, S. Basu, Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis, J. Photochem. Photobiol., A, 376 (2019) 32–42.
  46. L.J. Di, H. Yang, T. Xian, X.G. Liu, X.J. Chen, Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation, Nanomaterials (Basel), 9 (2019) 399.
  47. P.A. Vinosha, L.A. Mely, G.I.N. Mary, K. Mahalakshmi, S.J. Das, Study on cobalt ferrite nanoparticles synthesized by co-precipitation technique for photo-Fenton application, Mech. Mater. Sci. Eng. J., 9 (2017), doi:10.2412/mmse.36.49.466.
  48. X.L. Liang, Y.H. Zhong, S.Y. Zhu, L.Y. Ma, P. Yuan, J.X. Zhu, H.P. He, Z. Jiang, The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite, J. Hazard. Mater., 199 (2012) 247–254.
  49. X.Y. Jiang, L.L. Li, Y.R. Cui, F.L. Cui, New branch on old tree: green-synthesized RGO/Fe3O4 composite as a photo-Fenton catalyst for rapid decomposition of methylene blue, Ceram. Int., 43 (2017) 14361–14368.
  50. Y.Y. Liu, W. Jin, Y.P. Zhao, G.S. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Appl. Catal., B, 206 (2017) 642–652.
  51. K.M. Reza, A. Kurny, F. Gulshan, Photocatalytic degradation of methylene blue by magnetite+H2O2+UV process, J. Environ. Sci. Dev., 7 (2016) 325.
  52. J.R. Kim, E.S. Kan, Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light, J. Ind. Eng. Chem., 21 (2015) 644–652.