References
- K. Bataineh, Multi-effect desalination plant combined with
thermal compressor driven by steam generated by solar energy,
Desalination, 385 (2016) 39–52.
- M.S. Khan, B. Lal, K.M. Sabil, I. Ahmed, Desalination of
seawater through gas hydrate process: An overview, J. Adv. Res.
Fluid Mech. Thermal Sci., 55 (2019) 65–73.
- A.A.S. Azmi, F.S. Sani, F. Ali, M. Mel, Interactive effect of
temperature, pH and light intensity on biodesalination
of seawater by synechococcus sp. PCC 7002 and on the
cyanobacteria growth, J. Adv. Res. Fluid Mech. Thermal Sci.,
52 (2018) 85–93.
- A.L. Ghoneyem, A. Ileri, Software to analyze solar stills and an
experimental study on the effects of the cover, Desalination,
114 (1997) 37–44.
- O. Badran, M. Abu-Khader, Evaluating thermal performance of
a single slope solar still, Heat Mass Transf., 43 (2007) 985–995.
- E.A. Almuhanna, Evaluation of single slop solar still integrated
with evaporative cooling system for brackish water desalination,
J. Agric. Sci., 6 (2014) 48–58.
- K.K. Murugavel, K.S.K. Chockalingam, K. Srithar, Modeling
and verification of double slope single basin solar still using
laboratory and actual solar conditions, Jordan J. Mech. Ind.
Eng., 3 (2009) 228–235.
- A.Z. AlGarni, Enhancing the solar still using immersion type
water heater productivity and the effect of external cooling fan
in winter, Appl. Solar Energy, 48 (2012) 193–200.
- G.N. Tiwari, H.P. Madhuri, Effect of water flow over the glass
cover of a single basin solar still with an intermittent flow
of waste hot water in the basin, Energy Convers. Manage.,
25 (1985) 315–322.
- B.B. Sahoo, N. Sahoo, P. Mahanta, L. Borbora, P. Kalita, U.K.
Saha, Performance assessment of a solar still using blackened
surface and thermocol insulation, Renew. Energy, 33 (2008)
1703–1708.
- B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of
the basin type solar still under local climate conditions, Energy
Convers. Manage., 41 (2000) 883–890.
- R. Tripathi, G.N. Tiwari, Effect of water depth on internal
heat and mass transfer for active solar distillation system,
Desalination, 170 (2004) 251–262.
- T. Rajesh, G.N. Tiwari, Thermal modeling of passive and active
solar stills for different depths of water by using the concept of
solar fraction, Sol. Energy, 80 (2006) 956–967.
- M.K. Phadatare, S.K. Verma, Influence of water depth on internal
heat and mass transfer in a plastic solar still, Desalination,
217 (2007) 267–275.
- M.R. Rajamanickam, A. Ragupathy, Influence of water depth
on internal heat and mass transfer in a double slope solar still,
Energy Procedia, 14 (2012) 1701–1708.
- El-Sebaii, Effect of wind speed on active and passive solar stills,
Energy Convers. Manage., 45 (2004) 1187–1204.
- R. Bhardwaj, M.V. Kortenaar, R.F. Mudde, Maximized
production of water by increasing area of condensation surface
for solar distillation, Appl. Energy, 154 (2015) 480–490.
- A.J.N. Khalifa, H.A. Ibrahim, Effect of
inclination of the external reflector on the performance of a
basin type solar still at various seasons, Energy, Sustain. Dev.,
13 (2009) 244–249.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah,
T. Arunkumar, R. Sathyamurthy, Augmentation of a solar
still distillate yield via absorber plate coated with black
nanoparticles. Alexandria Eng. J., 56 (2017) 433–438.
- T. Elango, A. Kannan, K.K. Murugavel, Performance study
on single basin single Slope solar still with different water
nanofluids, Desalination, 360 (2015) 45–51.
- L. Sahota, G.N. Tiwari, Effect of Al2O3 nanoparticles on the
performance of Passive double slope solar still, Sol. Energy,
130 (2016) 260–272.
- S. Nazari, H. Safarzadeh, M. Bahiraei, Performance improvement
of a single slope solar still by employing thermoelectric
cooling channel and copper oxide nanofluid: an experimental
study, J. Cleaner Prod., 208 (2019) 1041–1052.
- N. Abdelal, Y. Taamneh, Enhancement of pyramid solar still
productivity using absorber plates made of carbon fiber/CNT-modified epoxy composites, Desalination, 419 (2017)
117–124.
- B. Gupta, A. Kumar, P. Baredar, Experimental investigation
on modified solar still using nanoparticles and water sprinkler
attachment, Front. Mater.. 4 (2017) 1–7.
- A. Hilo, A. Abu Talib, S. Nfawa, M. Sultan, M. Hamid,
M.I Bheekhun, Heat transfer and thermal conductivity
enhancement using graphene nanofluid: a review, J. Adv. Res.
Fluid Mech. Thermal Sci., 55 (2019) 74–87.
- V. Velmurugan,S. Pandiarajan, G. Valeo, L. Subramanian,
C. Prabaharan, K. Srithar, Integrated performance of stepped
and single basin solar stills with mini solar pond. Desalination,
249 (2009) 902–919.
- K. Murugavel, S. Sivakumar, J. Ahamed, Kn Chockalingam,
K. Srithar, Single basin double slope solar still with minimum
basin depth and energy storing materials, Appl. Energy,
87 (2010) 514–523.
- V. Velmurugan, K.J. Kumar KJ, T. NoorulHaq, K. Srithar,
Performance analysis in stepped solar still for effluent
desalination, Energy, 34 (2009) 1179–1186.
- V. Velmurugan, S. Kumaran, V. Prabhu, K. Srithar, Productivity
enhancement of stepped solar still – performance analysis,
Therm. Sci., 12 (2008) 153–163.
- D. Rahul, G.N. Tiwari, Characteristic equation of a passive solar
still. Desalination, 245 (2009) 246–265.
- H. Zurigat Yousef, K. Abu-ArabiMousa, Modeling and
performance analysis of a regenerative solar desalination unit.
Appl. Therm. Eng., 24 (2004) 1061–1072.
- A. Agrawal, R.S. Rana, P.K. Srivastava, Heat transfer coefficients
and productivity of a single slope single basin solar still in Indian
climatic condition: experimental and theoretical comparison,
Resour.-Efficient Technol., 3 (2017) 466–482.
- A.E. Kabeel, Y.A.F. El-Samadony, W.M. El-Maghlany,
Comparative study on the solar still performance utilizing
different PCM. Desalination, 432 (2018) 89–96.
- V. Velmurugan, C.K. Deenadayalan, H. Vinod, K. Srithar,
Desalination of effluent using fin type solar still, Energy,
33 (2008) 1719–1727.
- B.C. Pak, Y. Cho, Hydrodynamic and heat transfer study
of dispersed fluids with submicron metallic oxide particle,
Exp. Heat Transf., 11 (1998) 151–170.
- Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of
nanofluids, Int. J. Heat Mass Transf., 43 (2000) 3701–3708.
- Einstein, Investigation on the theory of Brownian motion,
Dover, New York, 1956.
- J.C. Maxwell, Treatise on electricity and magnetism, Dover,
New York, 1954.
- K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer
of water-based Al2O3 nanofluids in a rectangular cavity, Int. J.
Heat Mass Transf., 50 (2007) 4003–4010.
- C. Popiel, J. Wojtkowiak, Simple formulas for thermo-physical
properties of liquid water for heat transfer calculations (from
0°C to 50°C), Heat Transf. Eng., 19 (1998) 87–101.
- K. Khanafer, K. Vafai, A critical synthesis of thermophysical
characteristics of nanofluids. Int. J. Heat Mass Transfer,
54 (2011) 4410–4428.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of
modified solar still using nanofluids and external condenser,
J. Taiwan Inst. Chem. Eng., 75 (2017) 77–86.