References

  1. K. Bataineh, Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy, Desalination, 385 (2016) 39–52.
  2. M.S. Khan, B. Lal, K.M. Sabil, I. Ahmed, Desalination of seawater through gas hydrate process: An overview, J. Adv. Res. Fluid Mech. Thermal Sci., 55 (2019) 65–73.
  3. A.A.S. Azmi, F.S. Sani, F. Ali, M. Mel, Interactive effect of temperature, pH and light intensity on biodesalination of seawater by synechococcus sp. PCC 7002 and on the cyanobacteria growth, J. Adv. Res. Fluid Mech. Thermal Sci., 52 (2018) 85–93.
  4. A.L. Ghoneyem, A. Ileri, Software to analyze solar stills and an experimental study on the effects of the cover, Desalination, 114 (1997) 37–44.
  5. O. Badran, M. Abu-Khader, Evaluating thermal performance of a single slope solar still, Heat Mass Transf., 43 (2007) 985–995.
  6. E.A. Almuhanna, Evaluation of single slop solar still integrated with evaporative cooling system for brackish water desalination, J. Agric. Sci., 6 (2014) 48–58.
  7. K.K. Murugavel, K.S.K. Chockalingam, K. Srithar, Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions, Jordan J. Mech. Ind. Eng., 3 (2009) 228–235.
  8. A.Z. AlGarni, Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter, Appl. Solar Energy, 48 (2012) 193–200.
  9. G.N. Tiwari, H.P. Madhuri, Effect of water flow over the glass cover of a single basin solar still with an intermittent flow of waste hot water in the basin, Energy Convers. Manage., 25 (1985) 315–322.
  10. B.B. Sahoo, N. Sahoo, P. Mahanta, L. Borbora, P. Kalita, U.K. Saha, Performance assessment of a solar still using blackened surface and thermocol insulation, Renew. Energy, 33 (2008) 1703–1708.
  11. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions, Energy Convers. Manage., 41 (2000) 883–890.
  12. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation system, Desalination, 170 (2004) 251–262.
  13. T. Rajesh, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Sol. Energy, 80 (2006) 956–967.
  14. M.K. Phadatare, S.K. Verma, Influence of water depth on internal heat and mass transfer in a plastic solar still, Desalination, 217 (2007) 267–275.
  15. M.R. Rajamanickam, A. Ragupathy, Influence of water depth on internal heat and mass transfer in a double slope solar still, Energy Procedia, 14 (2012) 1701–1708.
  16. El-Sebaii, Effect of wind speed on active and passive solar stills, Energy Convers. Manage., 45 (2004) 1187–1204.
  17. R. Bhardwaj, M.V. Kortenaar, R.F. Mudde, Maximized production of water by increasing area of condensation surface for solar distillation, Appl. Energy, 154 (2015) 480–490.
  18. A.J.N. Khalifa, H.A. Ibrahim, Effect of inclination of the external reflector on the performance of a basin type solar still at various seasons, Energy, Sustain. Dev., 13 (2009) 244–249.
  19. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, T. Arunkumar, R. Sathyamurthy, Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alexandria Eng. J., 56 (2017) 433–438.
  20. T. Elango, A. Kannan, K.K. Murugavel, Performance study on single basin single Slope solar still with different water nanofluids, Desalination, 360 (2015) 45–51.
  21. L. Sahota, G.N. Tiwari, Effect of Al2O3 nanoparticles on the performance of Passive double slope solar still, Sol. Energy, 130 (2016) 260–272.
  22. S. Nazari, H. Safarzadeh, M. Bahiraei, Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study, J. Cleaner Prod., 208 (2019) 1041–1052.
  23. N. Abdelal, Y. Taamneh, Enhancement of pyramid solar still productivity using absorber plates made of carbon fiber/CNT-modified epoxy composites, Desalination, 419 (2017) 117–124.
  24. B. Gupta, A. Kumar, P. Baredar, Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment, Front. Mater.. 4 (2017) 1–7.
  25. A. Hilo, A. Abu Talib, S. Nfawa, M. Sultan, M. Hamid, M.I Bheekhun, Heat transfer and thermal conductivity enhancement using graphene nanofluid: a review, J. Adv. Res. Fluid Mech. Thermal Sci., 55 (2019) 74–87.
  26. V. Velmurugan,S. Pandiarajan, G. Valeo, L. Subramanian, C. Prabaharan, K. Srithar, Integrated performance of stepped and single basin solar stills with mini solar pond. Desalination, 249 (2009) 902–919.
  27. K. Murugavel, S. Sivakumar, J. Ahamed, Kn Chockalingam, K. Srithar, Single basin double slope solar still with minimum basin depth and energy storing materials, Appl. Energy, 87 (2010) 514–523.
  28. V. Velmurugan, K.J. Kumar KJ, T. NoorulHaq, K. Srithar, Performance analysis in stepped solar still for effluent desalination, Energy, 34 (2009) 1179–1186.
  29. V. Velmurugan, S. Kumaran, V. Prabhu, K. Srithar, Productivity enhancement of stepped solar still – performance analysis, Therm. Sci., 12 (2008) 153–163.
  30. D. Rahul, G.N. Tiwari, Characteristic equation of a passive solar still. Desalination, 245 (2009) 246–265.
  31. H. Zurigat Yousef, K. Abu-ArabiMousa, Modeling and performance analysis of a regenerative solar desalination unit. Appl. Therm. Eng., 24 (2004) 1061–1072.
  32. A. Agrawal, R.S. Rana, P.K. Srivastava, Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: experimental and theoretical comparison, Resour.-Efficient Technol., 3 (2017) 466–482.
  33. A.E. Kabeel, Y.A.F. El-Samadony, W.M. El-Maghlany, Comparative study on the solar still performance utilizing different PCM. Desalination, 432 (2018) 89–96.
  34. V. Velmurugan, C.K. Deenadayalan, H. Vinod, K. Srithar, Desalination of effluent using fin type solar still, Energy, 33 (2008) 1719–1727.
  35. B.C. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transf., 11 (1998) 151–170.
  36. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43 (2000) 3701–3708.
  37. Einstein, Investigation on the theory of Brownian motion, Dover, New York, 1956.
  38. J.C. Maxwell, Treatise on electricity and magnetism, Dover, New York, 1954.
  39. K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transf., 50 (2007) 4003–4010.
  40. C. Popiel, J. Wojtkowiak, Simple formulas for thermo-physical properties of liquid water for heat transfer calculations (from 0°C to 50°C), Heat Transf. Eng., 19 (1998) 87–101.
  41. K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transfer, 54 (2011) 4410–4428.
  42. A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of modified solar still using nanofluids and external condenser, J. Taiwan Inst. Chem. Eng., 75 (2017) 77–86.