References
- C.G. White, Handbook of Chlorination and Alternative Disinfectants,
5th ed., John Wiley & Sons Inc., New York, 2010.
- S.M. Acharya, F. Kurisu, I. Kasuga, H. Furumai, Chlorine
dose determines bacterial community structure of subsequent
regrowth in reclaimed water, J. Water Environ. Technol., 14
(2016) 15–24.
- T. Bond, N. Graham, Predicting chloroform production from
organic precursors, Water Res., 124 (2017) 167–176.
- Ministry of Health, Drinking Water Health Standards GB5749-
2006, Ministry of Health, China, 2007.
- WHO, Guidelines for Drinking-Water Quality, 4th ed., World
Health Organisation, Geneva, 2011.
- G. Hua, D.A. Reckhow, DBP formation during chlorination
and chloramination: Effect of reaction time, pH, dosage, and
temperature, J. Am. Water Works Assn., 100 (2008) 82–95.
- P. Roccaro, H.-S. Chang, F.G.A. Vagliasindi, G.V. Korshin,
Differential absorbance study of effects of temperature on
chlorine consumption and formation of disinfection by-products
in chlorinated water, Water Res., 42 (2008) 1879–1888.
- S.H. Maier, R.S. Powell, C.A. Woodward, Calibration and
comparison of chlorine decay models for a test water
distribution system, Water Res., 34 (2000) 2301–2309.
- T. Fuchigami, K. Terashima, H. Bandow, Residual chlorine
management based on quantitative estimation of chlorine
consumption by inner wall surfaces of distribution pipes, Water
Sci. Technol. Water Supply, 12 (2012) 157–167.
- Y. Hosaka, Examination of rechlorination at water supply
stations using a model for residual chlorine consumption,
J. Water Environ. Technol., 10 (2012) 101–115.
- V. Vapnik, The Nature of Statistical Learning Theory, Springer,
New York, 1995.
- V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
- G. Loosli, S. Canu, S.O. Cheng, Learning SVM in Krein spaces,
IEEE Trans. Software Eng., 38 (2015) 1204–1216.
- F. Girosi, An equivalence between sparse approximation
and support vector machines, Neural Comput., 10 (1998)
1455–1480.
- R.G. Negri, L.V. Dutra, S.J.S. Sant’Anna, Comparing support
vector machine contextual approaches for urban area classification,
Remote Sens. Lett., 7 (2016) 485–494.
- Z. Liu, J. Shao, W. Wu, H. Chen, C. Shi, Comparison on
landslide nonlinear displacement analysis and prediction with
computational intelligence approaches, Landslides, 11 (2014)
889–896.
- D. Zibar, J. Thrane, J. Wass, J. Diniz, M. Piels, Machine learning
techniques for optical performance monitoring from directly
detected PDM-QAM signals, J. Lightwave Technol., 35 (2017)
868–875.
- L. Sun, J. Bao, Y. Chen, M. Yang, Research on parameter
selection method for support vector machines, Appl. Intell., 48
(2017) 331–342.
- O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing
multiple parameters for support vector machines, Mach. Learn.,
46 (2002) 131–159.
- M.M. Adankon, M. Cheriet, Optimizing resources in model
selection for support vector machine, Pattern Recognit., 40
(2007) 953–963.
- S.U. Khan, S. Yang, L. Wang, L. Liu, A modified particle swarm
optimization algorithm for global optimizations of inverse
problems, IEEE Trans. Magn., 52 (2016) 1–4.
- Y. Ren, G. Bai, Determination of optimal SVM parameters by
using GA/PSO, J. Comput., 5 (2010) 1160–1168.
- L. Shen, H. Chen, Z. Yu, W. Kang, B. Zhang, H. Li, B. Yang,
D. Liu, Evolving support vector machines using fruit fly
optimization for medical data classification, Knowledge Based
Syst., 96 (2016) 61–75.
- S.T. Hong, A.K. Lee, H.H. Lee, N.S. Park, S.H. Lee, Application
of neuro-fuzzy PID controller for effective post-chlorination in
water treatment plant, Desal. Wat. Treat., 47 (2012) 211–220.
- X.M. Sun, K.Z. Liu, C.Y. Wen, W. Wang, Predictive control of
nonlinear continuous networked control systems with large
time-varying transmission delays and transmission protocols,
Automatica, 64 (2016) 76–85.
- L. Teng, Y. Wang, W. Cai, H. Li, Robust model predictive control
of discrete nonlinear systems with time delays and disturbances
via T–S fuzzy approach, J. Process Control, 53 (2017) 70–79.
- H. Zhang, A. Chakrabarty, R. Ayoub, G.T. Buzzard, S. Sundaram,
Sampling-Based Explicit Nonlinear Model Predictive Control
for Output Tracking, IEEE 55th Conference on Decision and
Control (CDC), 2016, pp. 4722–4727.
- A. Chakrabarty, G.T. Buzzard, S.H. Żak, Output-tracking
quantized explicit nonlinear model predictive control using
multiclass support vector machines, IEEE Trans. Ind. Electron.,
64 (2017) 4130–4138.
- A. Chakrabarty, V. Dinh, M.J. Corless, A.E. Rundell, S.H. Żak,
G.T. Buzzard, Support vector machine informed explicit nonlinear
model predictive control using low-discrepancy sequences,
IEEE Trans. Autom. Control, 62 (2017) 135–148.
- C. Wei, J. Luo, H. Dai, Z. Yin, W. Ma, J. Yuan, Globally robust
explicit model predictive control of constrained systems
exploiting SVM-based approximation, Int. J. Robust Nonlinear
Control, 27 (2017) 3000–3027.
- M. Iancu, M.V. Cristea, P.S. Agachi, MPC vs. PID. the advanced
control solution for an industrial heat integrated fluid catalytic
cracking plant, Comput. Aided Chem. Eng., 29 (2011) 517–521.
- S. Kwon, M. Nayhouse, G. Orkoulas, N. Dong, P.D. Christofides,
A method for handling batch-to-batch parametric drift using
moving horizon estimation: application to run-to-run MPC of
batch crystallization, Chem. Eng. Sci., 127 (2015) 210–219.
- B.Y. Gao, H.H. Hahn, E. Hoffmann, Evaluation of aluminumsilicate
polymer composite as a coagulant for water treatment,
Water Res., 36 (2002) 3573–3581.
- W. Jakubowski, G.F. Craun, Update on the Control of Giardia
in Water Supplies, B.E. Olson, M.E. Olson, P.M. Wallis Eds.,
Giardia: The Cosmopolitan Parasite, CABI Publishing, Wallingford,
2002.
- D.A. Cornwell, S.H. Via, Demonstrating Cryptosporidium
removal using spore monitoring at lime-softening plants, J. Am.
Water Works Assn., 95 (2003) 124–133.
- T. Bond, M.R. Templeton, O. Rifai, N.J. Graham, Chlorinated
and nitrogenous disinfection by-product formation from
ozonation and post-chlorination of natural organic matter
surrogates, Chemosphere, 111 (2014) 218–224.
- M. Deborde, G.U. Von, Reactions of chlorine with inorganic
and organic compounds during water treatment—Kinetics and
mechanisms: a critical review, Water Res., 42 (2008) 13–51.
- P. Hua, E. Vasyukova, W. Uhl, A variable reaction rate model
for chlorine decay in drinking water due to the reaction with
dissolved organic matter, Water Res., 75 (2015) 109–122.
- D.F. Lawler, P.C. Singer, Analyzing disinfection kinetics and
reactor design: a conceptual approach versus the SWTR, J. AWWA, 85 (1993) 67–76.
- H. Haider, S. Haydar, M. Sajid, S. Tesfamariam, R. Sadiq,
Framework for optimizing chlorine dose in small- to mediumsized
water distribution systems: a case of a residential
neighbourhood in Lahore, Pakistan, Water SA, 41 (2015)
614–623.
- X.M. Zhou, A new method with high confidence for validation
of computer simulation models of flight systems, J. Syst. Eng.
Electron, 4 (1993) 43–52.
- S.J. Qin, T.A. Badgwell, A survey of industrial model predictive
control technology, Control Eng. Pract., 11 (2003) 733–764.
- D.E. Quevedo, G.C. Goodwin, J.A. De Doná, Finite constraint
set receding horizon quadratic control, Int. J. Robust Nonlinear
Control, 14 (2004) 355–377.
- R.P. Aguilera, D.E. Quevedo, Stability analysis of quadratic
MPC with a discrete input alphabet, IEEE Trans. Autom.
Control, 58 (2013) 3190–3196.