References
- G.W. Luther III, B. Sundby, B.L. Lewis, P.J. Brendel, N. Silverberg,
Interactions of manganese with the nitrogen cycle: alternative
pathways to dinitrogen, Geochim. Cosmochim. Acta, 61 (1997)
4043–4052.
- J.-C. Clément, J. Shrestha, J.G. Ehrenfeld, P.R. Jaffé, Ammonium
oxidation coupled to dissimilatory reduction of iron under
anaerobic conditions in wetland soils, Soil Biol. Biochem.,
37 (2005) 2323–2328.
- S. Sawayama, Possibility of anoxic ferric ammonium oxidation,
J. Biosci. Bioeng., 101 (2006) 70–72.
- W.H. Yang, K.A. Weber, W.L. Silver, Nitrogen loss from soil
through anaerobic ammonium oxidation coupled to iron
reduction, Nat. Geosci., 5 (2012) 538–541.
- L.-J. Ding, X.-L. An, S. Li, G.-L. Zhang, Y.-G. Zhu, Nitrogen
loss through anaerobic ammonium oxidation coupled to iron
reduction from paddy soils in a chronosequence, Environ. Sci.
Technol., 48 (2014) 10641–10647.
- S. Huang, P.R. Jaffé, Characterization of incubation experiments
and development of an enrichment culture capable of ammonium
oxidation under iron-reducing conditions, Biogeosciences,
12 (2015) 769–779.
- J. Shrestha, J.J. Rich, J.G. Ehrenfeld, P.R. Jaffé, Oxidation
of ammonium to nitrite under iron-reducing conditions in
wetland soils: laboratory, field demonstrations, and push-pull
rate determination, Soil Sci., 174 (2009) 156–164.
- W.S. Park, Y.-K. Nam, M.-J. Lee, T.-H. Kim, Anaerobic ammoniaoxidation
coupled with Fe3+ reduction by an anaerobic culture
from a piggery wastewater acclimated to NH4+/Fe3+ medium,
Biotechnol. Bioprocess Eng., 14 (2009) 680–685.
- B.J. Ding, Z.K. Li, Y.B. Qin, Nitrogen loss from anaerobic
ammonium oxidation coupled to iron(III) reduction in a
riparian zone, Environ. Pollut., 231 (2017) 379–386.
- S. Huang, C. Chen, X.C. Peng, P.R. Jaffé, Environmental factors
affecting the presence of Acidimicrobiaceae and ammonium
removal under iron-reducing conditions in soil environments,
Soil Biol. Biochem., 98 (2016) 148–158.
- N.A. Kiriazis, Evidence for Iron-Dependent Anaerobic Ammonium
Oxidation to Nitrate (Feammox) in Deep-Sea Sediments,
in: Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA, USA, 2015.
- E. Emilia Rios-Del Toro, E.I. Valenzuela, N.E. López-Lozano,
M. Guadalupe Cortés-Martinez, M.A. Sánchez-Rodríguez,
O. Calvario-Martínez, S. Sánchez-Carrillo, F.J. Cervantes,
Anaerobic ammonium oxidation linked to sulfate and ferric
iron reduction fuels nitrogen loss in marine sediments, Biodegradation,
29 (2018) 429–442.
- Y.F. Yang, Y.B. Zhang, Y. Li, H.M. Zhao, H. Peng, Nitrogen
removal during anaerobic digestion of wasted activated
sludge under supplementing Fe(III) compounds, Chem. Eng. J.,
332 (2018) 711–716.
- X. Li, Y. Yuan, Y. Huang, H.-w. Liu, Z. Bi, Y. Yuan, P.-b. Yang,
A novel method of simultaneous NH4+ and NO3– removal using
Fe cycling as a catalyst: Feammox coupled with NAFO, Sci.
Total Environ., 631–632 (2018) 153–157.
- X. Li, Y. Huang, H.-w. Liu, C. Wu, W. Bi, Y. Yuan, X. Liu,
Simultaneous Fe(III) reduction and ammonia oxidation process
in Anammox sludge, J. Environ. Sci., 64 (2018) 42–50.
- X.F. Li, L.J. Hou, M. Liu, Y.L. Zheng, G.Y. Yin, X.B. Lin,
L. Cheng, Y. Li, X.T. Hu, Evidence of nitrogen loss from
anaerobic ammonium oxidation coupled with ferric iron
reduction in an intertidal wetland, Environ. Sci. Technol.,
49 (2015) 11560–11568.
- G.X. Huang, Y.Y. Huang, H.Y. Hu, F. Liu, Y. Zhang, R.W. Deng,
Remediation of nitrate–nitrogen contaminated groundwater
using a pilot-scale two-layer heterotrophic–autotrophic denitrification
permeable reactive barrier with spongy iron/pine bark,
Chemosphere, 130 (2015) 8–16.
- Y. Wang, J. Li, S. Zhai, Z. Wei, J. Feng, Enhanced phosphorus
removal by microbial-collaborating sponge iron, Water Sci.
Technol., 72 (2015) 1257–1265.
- C. Jiang, L. Jia, Y. He, B. Zhang, G. Kirumba, J. Xie, Adsorptive
removal of phosphorus from aqueous solution using sponge
iron and zeolite, J. Colloid Interface Sci., 402 (2013) 246–252.
- B. Xu, M. Jia, J. Men, Preparation of modified sponge iron and
kinetics of deoxygenization by it, Arabian J. Sci. Eng., 38 (2013)
3259–3266.
- M. Selan, J. Lehrhofer, K. Friedrich, K. Kordesch, G. Simader,
Sponge iron: economic, ecological, technical and processspecific
aspects, J. Power Sources, 61 (1996) 247–253.
- G. Zhu, J. Song, W. Dong, J. Lu, Y. Wang, W. Jiang, P. Guo,
Removal of hexavalent chromium from water by modified
sponge iron particles and insights into mechanism, Environ.
Sci. Pollut. Res., 25 (2018) 26173–26181.
- K. Ritter, M.S. Odziemkowski, R.W. Gillham, An in situ study
of the role of surface films on granular iron in the permeable
iron wall technology, J. Contam. Hydrol., 55 (2002) 87–111.
- J. Sorensen, Denitrification rates in a marine sediment as
measured by acetylene inhibition technique, Appl. Environ.
Microbiol., 36 (1978) 139–143.
- M.M. Jensen, B. Thamdrup, T. Dalsgaard, Effects of specific
inhibitors on anammox and denitrification in marine sediments,
Appl. Environ. Microbiol., 73 (2007) 3151–3158.
- C.S. Hwu, S.K. Tseng, C.Y. Yuan, Z. Kulik, G. Lettinga, Biosorption
of long-chain fatty acids in uasb treatment process,
Water Res., 32 (1998) 1571–1579.
- APHA, Standard Methods for Examination of Water and
Wastewater, American Public Health Association, Washington,
D.C., 1998.
- D.R. Lovley, E.J.P. Phillips, Rapid assay for microbially reducible
ferric iron in aquatic sediments, Appl. Environ. Microbiol.,
53 (1987) 1536–1540.
- D. Bru, A. Sarr, L. Philippot, Relative abundances of proteobacterial
membrane-bound and periplasmic nitrate reductases
in selected environments, Appl. Environ. Microbiol., 73 (2007)
5971–5974.
- S. Henry, E. Baudoin, J.C. Lopez-Gutierrez, F. Martin-Laurent,
A. Brauman, L. Philippot, Quantification of denitrifying bacteria
in soils by nirK gene targeted real-time PCR, J. Microbiol.
Methods, 59 (2004) 327–335.
- E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, L. Philippot,
Abundance of narG, nirS, nirK, and nosZ genes of denitrifying
bacteria during primary successions of a glacier foreland,
Appl. Environ. Microbiol., 72 (2006) 5957–5962.
- A.J. Coby, F. Picardal, E. Shelobolina, H. Xu, E.E. Roden,
Repeated anaerobic microbial redox cycling of iron, Appl.
Environ. Microbiol., 77 (2011) 6036–6042.
- B. Kartal, N.M. de Almeida, W.J. Maalcke, H.J.M. Op den
Camp, M.S.M. Jetten, J.T. Keltjens, How to make a living from
anaerobic ammonium oxidation, FEMS Microbiol. Rev., 37 (2013)
428–461.
- J. Istok, J. Senko, L. Krumholz, D. Watson, M. Bogle, A. Peacock,
Y. Chang, D. White, In situ bioreduction of technetium and
uranium in a nitrate-contaminated aquifer, Environ. Sci.
Technol., 38 (2004) 468–475.
- K.L. Straub, M. Benz, B. Schink, F. Widdel, Anaerobic, nitratedependent
microbial oxidation of ferrous iron, Appl. Environ.
Microbiol., 62 (1996) 1458–1460.
- M.S. Odziemkowski, T.T. Schuhmacher, R.W. Gillham, E.J. Reardon,
Mechanism of oxide film formation on iron in simulating
groundwater solutions: Raman spectroscopic studies, Corros.
Sci., 40 (1998) 371–389.
- A.S. Burns, C.W. Pugh, Y.T. Segid, P.T. Behum, L. Lefticariu,
K.S. Bender, Performance and microbial community dynamics
of a sulfate-reducing bioreactor treating coal generated acid
mine drainage, Biodegradation, 23 (2012) 415–429.
- I. Sanchez-Andrea, A.J.M. Stams, R. Amils, J. Luis Sanz,
Enrichment and isolation of acidophilic sulfate-reducing bacteria
from Tinto River sediments, Environ. Microbiol. Rep.,
5 (2013) 672–678.
- P. Bao, G.-X. Li, Sulfur-driven iron reduction coupled to
anaerobic ammonium oxidation, Environ. Sci. Technol., 51 (2017)
6691–6698.
- E.D. Melton, E.D. Swanner, S. Behrens, C. Schmidt, A. Kappler,
The interplay of microbially mediated and abiotic reactions
in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12 (2014)
797–808.
- C.D. Ogg, B.K.C. Patel, Fervidicella metallireducens gen. nov.,
sp nov., a thermophilic, anaerobic bacterium from geothermal
waters, Int. J. Syst. Evol. Microbiol., 60 (2010) 1394–1400.
- D.R. Bond, D.R. Lovley, Evidence for involvement of an
electron shuttle in electricity generation by Geothrix fermentans,
Appl. Environ. Microbiol., 71 (2005) 2186–2189.
- J. Varia, A. Zegeye, S. Roy, S. Yahaya, S. Bull, Shewanella
putrefaciens for the remediation of Au3+, Co2+ and Fe3+ metal ions
from aqueous systems, Biochem. Eng. J., 85 (2014) 101–109.
- G.-W. Zhou, X.-R. Yang, H. Li, C.W. Marshall, B.-X. Zheng,
Y. Yan, J.-Q. Su, Y.-G. Zhu, Electron shuttles enhance anaerobic
ammonium oxidation coupled to iron(III) reduction, Environ.
Sci. Technol., 50 (2016) 9298–9307.
- A. Chakraborty, F. Picardal, Induction of nitrate-dependent
Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4
and Acidovorax sp. strain 2AN, Appl. Environ. Microbiol.,
79 (2013) 748–752.
- E.M. Muehe, S. Gerhardt, B. Schink, A. Kappler, Ecophysiology
and the energetic benefit of mixotrophic Fe(II) oxidation by
various strains of nitrate-reducing bacteria, FEMS Microbiol.
Ecol., 70 (2009) 335–343.
- F. Schaedler, C. Lockwood, U. Lueder, C. Glombitza, A. Kappler,
C. Schmidt, Microbially mediated coupling of Fe and N
cycles by nitrate-reducing Fe(II)-oxidizing bacteria in littoral
freshwater sediments, Appl. Environ. Microbiol., 84 (2018)
e2013–2017.
- H.K. Carlson, I.C. Clark, R.A. Melnyk, J.D. Coates, Toward a
mechanistic understanding of anaerobic nitrate-dependent iron
oxidation: balancing electron uptake and detoxification, Front.
Microbiol., 3 (2012) 57–62.
- J. Jamieson, H. Prommer, A.H. Kaksonen, J. Sun, A.J. Siade,
A. Yusov, B. Bostick, Identifying and quantifying the intermediate
processes during nitrate-dependent iron(II) oxidation,
Environ. Sci. Technol., 52 (2018) 5771–5781.
- J. Pu, C. Feng, Y. Liu, R. Li, Z. Kong, N. Chen, S. Tong, C. Hao,
Y. Liu, Pyrite-based autotrophic denitrification for remediation
of nitrate contaminated groundwater, Bioresour. Technol.,
173 (2014) 117–123.