References

  1. G.W. Luther III, B. Sundby, B.L. Lewis, P.J. Brendel, N. Silverberg, Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen, Geochim. Cosmochim. Acta, 61 (1997) 4043–4052.
  2. J.-C. Clément, J. Shrestha, J.G. Ehrenfeld, P.R. Jaffé, Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils, Soil Biol. Biochem., 37 (2005) 2323–2328.
  3. S. Sawayama, Possibility of anoxic ferric ammonium oxidation, J. Biosci. Bioeng., 101 (2006) 70–72.
  4. W.H. Yang, K.A. Weber, W.L. Silver, Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction, Nat. Geosci., 5 (2012) 538–541.
  5. L.-J. Ding, X.-L. An, S. Li, G.-L. Zhang, Y.-G. Zhu, Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence, Environ. Sci. Technol., 48 (2014) 10641–10647.
  6. S. Huang, P.R. Jaffé, Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions, Biogeosciences, 12 (2015) 769–779.
  7. J. Shrestha, J.J. Rich, J.G. Ehrenfeld, P.R. Jaffé, Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination, Soil Sci., 174 (2009) 156–164.
  8. W.S. Park, Y.-K. Nam, M.-J. Lee, T.-H. Kim, Anaerobic ammoniaoxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium, Biotechnol. Bioprocess Eng., 14 (2009) 680–685.
  9. B.J. Ding, Z.K. Li, Y.B. Qin, Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone, Environ. Pollut., 231 (2017) 379–386.
  10. S. Huang, C. Chen, X.C. Peng, P.R. Jaffé, Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments, Soil Biol. Biochem., 98 (2016) 148–158.
  11. N.A. Kiriazis, Evidence for Iron-Dependent Anaerobic Ammonium Oxidation to Nitrate (Feammox) in Deep-Sea Sediments, in: Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA, 2015.
  12. E. Emilia Rios-Del Toro, E.I. Valenzuela, N.E. López-Lozano, M. Guadalupe Cortés-Martinez, M.A. Sánchez-Rodríguez, O. Calvario-Martínez, S. Sánchez-Carrillo, F.J. Cervantes, Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments, Biodegradation, 29 (2018) 429–442.
  13. Y.F. Yang, Y.B. Zhang, Y. Li, H.M. Zhao, H. Peng, Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds, Chem. Eng. J., 332 (2018) 711–716.
  14. X. Li, Y. Yuan, Y. Huang, H.-w. Liu, Z. Bi, Y. Yuan, P.-b. Yang, A novel method of simultaneous NH4+ and NO3 removal using Fe cycling as a catalyst: Feammox coupled with NAFO, Sci. Total Environ., 631–632 (2018) 153–157.
  15. X. Li, Y. Huang, H.-w. Liu, C. Wu, W. Bi, Y. Yuan, X. Liu, Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge, J. Environ. Sci., 64 (2018) 42–50.
  16. X.F. Li, L.J. Hou, M. Liu, Y.L. Zheng, G.Y. Yin, X.B. Lin, L. Cheng, Y. Li, X.T. Hu, Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland, Environ. Sci. Technol., 49 (2015) 11560–11568.
  17. G.X. Huang, Y.Y. Huang, H.Y. Hu, F. Liu, Y. Zhang, R.W. Deng, Remediation of nitrate–nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic–autotrophic denitrification permeable reactive barrier with spongy iron/pine bark, Chemosphere, 130 (2015) 8–16.
  18. Y. Wang, J. Li, S. Zhai, Z. Wei, J. Feng, Enhanced phosphorus removal by microbial-collaborating sponge iron, Water Sci. Technol., 72 (2015) 1257–1265.
  19. C. Jiang, L. Jia, Y. He, B. Zhang, G. Kirumba, J. Xie, Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite, J. Colloid Interface Sci., 402 (2013) 246–252.
  20. B. Xu, M. Jia, J. Men, Preparation of modified sponge iron and kinetics of deoxygenization by it, Arabian J. Sci. Eng., 38 (2013) 3259–3266.
  21. M. Selan, J. Lehrhofer, K. Friedrich, K. Kordesch, G. Simader, Sponge iron: economic, ecological, technical and processspecific aspects, J. Power Sources, 61 (1996) 247–253.
  22. G. Zhu, J. Song, W. Dong, J. Lu, Y. Wang, W. Jiang, P. Guo, Removal of hexavalent chromium from water by modified sponge iron particles and insights into mechanism, Environ. Sci. Pollut. Res., 25 (2018) 26173–26181.
  23. K. Ritter, M.S. Odziemkowski, R.W. Gillham, An in situ study of the role of surface films on granular iron in the permeable iron wall technology, J. Contam. Hydrol., 55 (2002) 87–111.
  24. J. Sorensen, Denitrification rates in a marine sediment as measured by acetylene inhibition technique, Appl. Environ. Microbiol., 36 (1978) 139–143.
  25. M.M. Jensen, B. Thamdrup, T. Dalsgaard, Effects of specific inhibitors on anammox and denitrification in marine sediments, Appl. Environ. Microbiol., 73 (2007) 3151–3158.
  26. C.S. Hwu, S.K. Tseng, C.Y. Yuan, Z. Kulik, G. Lettinga, Biosorption of long-chain fatty acids in uasb treatment process, Water Res., 32 (1998) 1571–1579.
  27. APHA, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 1998.
  28. D.R. Lovley, E.J.P. Phillips, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53 (1987) 1536–1540.
  29. D. Bru, A. Sarr, L. Philippot, Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments, Appl. Environ. Microbiol., 73 (2007) 5971–5974.
  30. S. Henry, E. Baudoin, J.C. Lopez-Gutierrez, F. Martin-Laurent, A. Brauman, L. Philippot, Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR, J. Microbiol. Methods, 59 (2004) 327–335.
  31. E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, L. Philippot, Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland, Appl. Environ. Microbiol., 72 (2006) 5957–5962.
  32. A.J. Coby, F. Picardal, E. Shelobolina, H. Xu, E.E. Roden, Repeated anaerobic microbial redox cycling of iron, Appl. Environ. Microbiol., 77 (2011) 6036–6042.
  33. B. Kartal, N.M. de Almeida, W.J. Maalcke, H.J.M. Op den Camp, M.S.M. Jetten, J.T. Keltjens, How to make a living from anaerobic ammonium oxidation, FEMS Microbiol. Rev., 37 (2013) 428–461.
  34. J. Istok, J. Senko, L. Krumholz, D. Watson, M. Bogle, A. Peacock, Y. Chang, D. White, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38 (2004) 468–475.
  35. K.L. Straub, M. Benz, B. Schink, F. Widdel, Anaerobic, nitratedependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 62 (1996) 1458–1460.
  36. M.S. Odziemkowski, T.T. Schuhmacher, R.W. Gillham, E.J. Reardon, Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies, Corros. Sci., 40 (1998) 371–389.
  37. A.S. Burns, C.W. Pugh, Y.T. Segid, P.T. Behum, L. Lefticariu, K.S. Bender, Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage, Biodegradation, 23 (2012) 415–429.
  38. I. Sanchez-Andrea, A.J.M. Stams, R. Amils, J. Luis Sanz, Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments, Environ. Microbiol. Rep., 5 (2013) 672–678.
  39. P. Bao, G.-X. Li, Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation, Environ. Sci. Technol., 51 (2017) 6691–6698.
  40. E.D. Melton, E.D. Swanner, S. Behrens, C. Schmidt, A. Kappler, The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12 (2014) 797–808.
  41. C.D. Ogg, B.K.C. Patel, Fervidicella metallireducens gen. nov., sp nov., a thermophilic, anaerobic bacterium from geothermal waters, Int. J. Syst. Evol. Microbiol., 60 (2010) 1394–1400.
  42. D.R. Bond, D.R. Lovley, Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans, Appl. Environ. Microbiol., 71 (2005) 2186–2189.
  43. J. Varia, A. Zegeye, S. Roy, S. Yahaya, S. Bull, Shewanella putrefaciens for the remediation of Au3+, Co2+ and Fe3+ metal ions from aqueous systems, Biochem. Eng. J., 85 (2014) 101–109.
  44. G.-W. Zhou, X.-R. Yang, H. Li, C.W. Marshall, B.-X. Zheng, Y. Yan, J.-Q. Su, Y.-G. Zhu, Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction, Environ. Sci. Technol., 50 (2016) 9298–9307.
  45. A. Chakraborty, F. Picardal, Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN, Appl. Environ. Microbiol., 79 (2013) 748–752.
  46. E.M. Muehe, S. Gerhardt, B. Schink, A. Kappler, Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria, FEMS Microbiol. Ecol., 70 (2009) 335–343.
  47. F. Schaedler, C. Lockwood, U. Lueder, C. Glombitza, A. Kappler, C. Schmidt, Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(II)-oxidizing bacteria in littoral freshwater sediments, Appl. Environ. Microbiol., 84 (2018) e2013–2017.
  48. H.K. Carlson, I.C. Clark, R.A. Melnyk, J.D. Coates, Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification, Front. Microbiol., 3 (2012) 57–62.
  49. J. Jamieson, H. Prommer, A.H. Kaksonen, J. Sun, A.J. Siade, A. Yusov, B. Bostick, Identifying and quantifying the intermediate processes during nitrate-dependent iron(II) oxidation, Environ. Sci. Technol., 52 (2018) 5771–5781.
  50. J. Pu, C. Feng, Y. Liu, R. Li, Z. Kong, N. Chen, S. Tong, C. Hao, Y. Liu, Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater, Bioresour. Technol., 173 (2014) 117–123.