References

  1. E. Gracia-Lor, N.I. Rousis, E. Zuccato, R. Bade, J.A. Baz-Lomba, E. Castrignanò, A. Causanilles, F. Hernández, B. Kasprzyk-Hordern, J. Kinyua, A.-K. McCall, A.L.N. van Nuijs, B.G. Plósz, P. Ramin, Y. Ryu, M.M. Santos, K. Thomas, P. de Voogt, Z. Yang, S. Castiglioni, Estimation of caffeine intake from analysis of caffeine metabolites in wastewater, Sci. Total Environ., 609 (2017) 1582–1588.
  2. I.J. Buerge, T. Poiger, M.D. Müller, H.R. Buser, Caffeine, an anthropogenic marker for wastewater contamination of surface waters, Environ. Sci. Technol., 37 (2003) 691–700.
  3. R. Linden, M.V. Antunes, L.S. Heinzelmann, J.D. Fleck, R. Staggemeier, R.B. Fabres, A.D. Vecchia, C.A. Nascimento, F.R. Spilki, Caffeine as an indicator of human fecal contamination in the Sinos River: a preliminary study, Braz. J. Biol., 75 (2015) 81–84.
  4. E.S. Gonçalves, S.V. Rodrigues, E.V. da Silva-Filho, The use of caffeine as a chemical marker of domestic wastewater contamination in surface waters: seasonal and spatial variations in Teresópolis, Brazil, Rev. Ambient. Água, 12 (2017) http://dx.doi.org/10.4136/ambi-agua.1974.
  5. R. Dafouz, N. Cáceres, J.L. Rodríguez-Gil, N. Mastroianni, M. López de Alda, D. Barceló, Á.G. de Miguel, Y. Valcárcel, Does the presence of caffeine in the marine environment represent an environmental risk? a regional and global study, Sci. Total Environ., 615 (2018) 632–642.
  6. K. Nödler, D. Voutsa, T. Licha, Polar organic micropollutants in the coastal environment of different marine systems, Mar. Pollut. Bull., 85 (2014) 50–59.
  7. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  8. A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam., 3 (2017) 1–16.
  9. R. Loos, R. Negrão De Carvalho, S. Comero, D.S. Conduto António, M. Ghiani, T. Lettieri, G. Locoro, B. Paracchini, S. Tavazzi, B. Gawlik, L. Blaha, B. Jarosova, S. Voorspoels, D. Schwesig, P. Haglund, J. Fick, O. Gans, EU wide monitoring survey on waste water treatment plant effluents, Institute for Environment and Sustainability, JRC Sci. Policy Rep., (2012) doi:10.2788/60663.
  10. R. Chen, H.Y. Jiang, Y.-Y. Li, Caffeine degradation by methanogenesis: efficiency in anaerobic membrane bioreactor and analysis of kinetic behavior, Chem. Eng. J., 334 (2018) 444–452.
  11. A.G. Trovó, T.F.S. Silva, O. Gomes Jr., A.E.H. Machado, W.B. Neto, P.S. Muller Jr., D. Daniel, Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design, Chemosphere, 90 (2013) 170–175.
  12. S. Nanjundaiah, S. Mutturi, P. Bhatt, Modeling of caffeine degradation kinetics during cultivation of Fusarium solani using sucrose as co-substrate, Biochem. Eng. J., 125 (2017) 73–80.
  13. M.K. Arfanis, P. Adamou, N.G. Moustakas, T.M. Triantis, A.G. Kontos, P. Falaras, Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes, Chem. Eng. J., 310 (2017) 525–536.
  14. A. Elhalil, R. Elmoubarki, A. Machrouhi, M. Sadiq, M. Abdennouri, S. Qourzal, N. Barka, Photocatalytic degradation of caffeine by ZnO-ZnAl2O4 nanoparticles derived from LDH structure, J. Environ. Chem. Eng., 5 (2017) 3719–3726.
  15. K.Y.A. Lin, H.K. Lai, S. Tong, One-step prepared cobalt-based nanosheet as an efficient heterogeneous catalyst for activating peroxymonosulfate to degrade caffeine in water, J. Colloid Interface Sci., 514 (2018) 272–280.
  16. F. Qi, W. Chu, B.B. Xu, Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate, Appl. Catal., B, 134–135 (2013) 324–332.
  17. J. Rivas, O. Gimeno, T. Borralho, J. Sagasti, UV-C and UV-C/peroxide elimination of selected pharmaceuticals in secondary effluents, Desalination, 279 (2011) 115–120.
  18. G. Rytwo, T. Klein, S. Margalit, O. Mor, A. Naftali, G. Daskal, A continuous-flow device for photocatalytic degradation and full mineralization of priority pollutants in water, Desal. Wat. Treat., 57 (2015) 16424–16434.
  19. O. Sacco, V. Vaiano, M. Matarangolo, ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis, Sep. Purif. Technol., 193 (2018) 303–310.
  20. J. Wang, Y.B. Sun, H. Jiang, J.W. Feng, Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite, J. Saudi Chem. Soc., 21 (2017) 545–557.
  21. Z.Q. Shu, J.R. Bolton, M. Belosevic, M. Gamal El Din, Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process, Water Res., 47 (2013) 2881–2889.
  22. B.A. Wols, C.H.M. Hofman-Caris, D.J.H. Harmsen, E.F. Beerendonk, Degradation of 40 selected pharmaceuticals by UV/H2O2, Water Res., 47 (2013) 5876–5888.
  23. B.A. Wols, D.J.H. Harmsen, J. Wanders-Dijk, E.F. Beerendonk, C.H.M. Hofman-Caris, Degradation of pharmaceuticals in UV(LP)/H2O2 reactors simulated by means of kinetic modeling and computational fluid dynamics (CFD), Water Res., 75 (2015) 11–24.
  24. B.A. Wols, D.J.H. Harmsen, E.F. Beerendonk, C.H.M. Hofman- Caris, Predicting pharmaceutical degradation by UV(MP)/H2O2 processes: a kinetic model, Chem. Eng. J., 263 (2015) 336–345.
  25. B.A. Wols, C.H.M. Hofman-Caris, Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res., 46 (2012) 2815–2827.
  26. F. Yuan, C. Hu, X.X. Hu, J.H. Qu, M. Yang, Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2, Water Res., 43 (2009) 1766–1774.
  27. D. Palma, A.B. Prevot, M. Brigante, D. Fabbri, G. Magnacca, C. Richard, G. Mailhot, R. Nisticò, New insights on the photodegradation of caffeine in the presence of bio-based substances-magnetic iron oxide hybrid nanomaterials, Materials (Basel), 11 (2018) 1–17.
  28. N. Liu, W.Y. Huang, M.Q. Tang, C.C. Yin, B. Gao, Z.M. Li, L. Tang, J.Q. Lei, L.F. Cui, X.D. Zhang, In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen, Chem. Eng. J., 359 (2019) 254–264.
  29. X.D. Zhang, Y. Yang, W.Y. Huang, Y.Q. Yang, Y.X. Wang, C. He, N. Liu, M.H. Wu, L. Tang, g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation, Mater. Res. Bull., 99 (2018) 349–358.
  30. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  31. IUPAC, Compendium of Chemical Terminology: Gold Book, International Union of Pure and Applied Chemistry, Royal Society of Chemistry, Cambridge, UK, 2014, p. 1670.
  32. L.L. Shao, S.K. Yang, W.K. Wang, Nano-Titanium Dioxide Mediate Photocatalytic Degradation of Caffeine, Environmental Science and Engineering College, Chang’an University, Xi’an, China, 2012.
  33. C. Indermuhle, M.J. Martín de Vidales, C. Sáez, J. Robles, P. Cañizares, J.F. García-Reyes, A. Molina-Díaz, C. Comninellis, M.A. Rodrigo, Degradation of caffeine by conductive diamond electrochemical oxidation, Chemosphere, 93 (2013) 1720–1725.
  34. P. Atkins, J. de Paula, Physical Chemistry, W.H. Freeman and Co., New York, 2006.
  35. S.L. Cole, J.W. Wilder, Gas phase decomposition by the Lindemann mechanism, SIAM J. Appl. Math., 51 (1998) 1489–1497.
  36. T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky, G.E. Zaikov, Ozone decomposition, Phys. Chem. Res. Eng. Appl. Sci. Vol. 1 Princ. Technol. Implic., 7 (2015) 273–304.
  37. C. Chieh, Chemistry LibreTexts - Steady-State Approximation, Department of Education Open Textbook Pilot Project, UC Davis Library, California, 2016. Available at: https://chem.libretexts.org.
  38. S.S. Brown, H. Stark, A.R. Ravishankara, Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5, J. Geophys. Res., 108 (2003) 4539, doi:10.1029/2003JD003407.
  39. E.H. Flach, S. Schnell, Use and abuse of the quasi-steady-state approximation, Syst. Biol. (Stevenage), 153 (2006) 187–191.
  40. T. Turányi, A.S. Tomlin, M.J. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem., 97 (1993) 163–172.
  41. V. Viossat, R.I. Ben-Aim, A test of the validity of steady state and equilibrium approximations in chemical kinetics, J. Chem. Educ., 70 (1993) 732.
  42. J.K. Kim, K. Josić, M.R. Bennett, The validity of quasi-steady-state approximations in discrete stochastic simulations, Biophys. J., 107 (2014) 783–793.
  43. F. Di Giacomo, A short account of RRKM theory of unimolecular reactions and of Marcus theory of electron transfer in a historical perspective, J. Chem. Educ., 92 (2015) 476–481.