References
- C. Zhang, S.H. Wang, Y.C. Yan, Isomerization and
biodegradation of betacypermethrin by Pseudomonas aeruginosa
CH7 with biosurfactant production, Bioresour. Technol.,
102 (2011) 7139–7146.
- M. Cycon, Z. Piotrowska-Seget, Pyrethroid-degrading microorganisms
and their potential for the bioremediation of
contaminated soils: a review, Front. Microbiol., 7 (2016) 1463.
- R. McKinlay, J.A. Plant, J.N. Bell, N. Voulvoulis, Endocrine
disrupting pesticides: implications for risk assessment, Environ.
Int., 34 (2008) 168–183.
- J. Fei, J.H. Qua, X.L. Ding, K. Xue, C.C. Lu, J.F. Chen, L. Song,
Y.K. Xia, S.L. Wang, X.R. Wang, Fenvalerate inhibits the growth
of primary cultured rat preantral ovarian follicles, Toxicology,
267 (2010) 1–6.
- A.H. Gu, X.G. Shi, C. Yuan, G.C. Ji, Y. Zhou, Y. Long, L. Song,
S.L. Wang, X.R. Wang, Exposure to fenvalerate causes brain
impairment during zebrafish development, Toxicol. Lett.,
197 (2010) 188–192.
- E. Aksakal, S.B. Ceyhun, O. Erdogan, D. Ekinci, Acute and
long-term genotoxicity of deltamethrin to insulin-like growth
factors and growth hormone in rainbow trout, Comp. Biochem.
Physiol. C: Toxicol. Pharmacol., 152 (2010) 451–455.
- A. Agrawal, R.S. Pandey, B. Sharma, Water pollution with
special reference to pesticide contamination in India, J. Water
Resour. Prot., 2 (2010) 432–448.
- Y. Gao, S.H. Chen, M.Y. Hu, Q.B. Hu, J.J. Luo, Y.N. Li, Purification
and characterization of a novel chlorpyrifos hydrolase from
Cladosporium cladosporioides Hu-01, PLoS One, 7 (2012) 1–7.
- P.N. Tallur, V.B. Megadi, H.Z. Ninnekar, Biodegradation of
cypermethrin by Micrococcus sp. strain CPN 1, Biodegradation,
28 (2008) 77–82.
- P. Guo, B. Wang, B. Hang, L. Li, S.W. Ali, J. He, S. Li, Pyrethroid
degrading Sphingobium sp. JZ-2 and the purification
and characterization of a novel pyrethroid hydrolase, Int.
Biodeterior. Biodegrad., 63 (2009) 1107–1112.
- S. Chen, M. Hu, J. Liu, G. Zhong, L. Yang, M. Rizwan-ul-
Haq, H. Han, Biodegradation of beta-cypermethrin and
3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01,
J. Hazard. Mater., 187 (2011a) 433–440.
- S. Chen, K. Lai, Y. Li, M. Hu, Y. Zhang, Y. Zeng,
Biodegradation of deltamethrin and its hydrolysis product
3-phenoxybenzaldehyde by a newly isolated Streptomyces
aureus strain HP-S-01, Appl. Microbiol. Biotechnol., 90 (2011b)
1471–1483.
- S.H. Chen, Q.B. Hu, M.Y. Hu, J.J. Luo, Q.F. Weng, K.P. Lai,
Isolation and characterization of a fungus able to degrade
pyrethroids and 3-phenoxybenzaldehyde, Bioresour. Technol.,
102 (2011c) 8110–8116.
- W.J. Xie, J.M. Zhou, H.Y. Wang, X.Q. Chen, Effect of nitrogen
on the degradation of cypermethrin and its metabolite
3-phenoxybenzoic acid in soil, Pedosphere, 18 (2008)
638–644.
- C. Yuan, C. Wang, S.Q. Gao, T.T. Kong, L. Chen, X.F. Li,
L. Song, Y.B. Wang, Effects of permethrin, cypermethrin and
3-phenoxybenzoic acid on rat sperm motility in vitro evaluated
with computer-assisted sperm analysis, Toxicol. in Vitro,
24 (2010) 382–386.
- K. Veenagayathri, N. Vasudevan, Degradation of 4-chlorophenol
by a moderately halophilic bacterial consortium under saline
conditions, Br Microbiol. Res. J., 3 (2013) 513–524.
- S. Silambarasan, J. Abraham, Halophilic bacterium JAS4 in
biomineralisation of endosulfan and its metabolites isolated
from Gossypium herbaceum rhizosphere soil, J. Taiwan Inst.
Chem. Eng., 45 (2014) 1748–1756.
- T. Oncescu, P. Oancea, M. Enache, G. Popescu, L. Dumitru,
M. Kamekura, Halophilic bacteria are able to decontaminate
dichlorvos, a pesticide, from saline environments, Cent. Eur.
J. Biol., 2 (2007) 563–573.
- S.I. Abou-Elela, M.M. Kamel, M.E. Fawzy, Biological treatment
of saline wastewater using a salt-tolerant microorganism,
Desalination, 250 (2010) 1–5.
- L.C. Castillo-Carvajal, J.L. Sanz-Martín, B.E. Barragán-Huerta,
Biodegradation of organic pollutants in saline wastewater by
halophilic microorganisms: a review, Environ. Sci. Pollut. Res.,
21 (2014) 9578–9588.
- Y. Sharifi, A.A. Pourbabaei, A. Javadi, M.H. Abdolmohammad,
M. Saffari, A. Morovvati, Biodegradation of glyphosate
herbicide by Salinicoccus spp. isolated from Qom Hoze-soltan
lake, Iran, Environ. Health Eng. Manag. J., 2 (2015) 31–36.
- S.C. Tsai, L. Tsai, Y. Li, An isolated Candida albicans TL3 capable
of degrading phenol at large concentration, Biosci. Biotechnol.,
Biochem., 69 (2005) 2358–2367.
- M.M. Bradford, A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding, Anal. Biochem., 72 (1976)
248–254.
- D. Desmarais, P.E. Jablonski, N.S. Fedarko, M.F. Roberts,
2-Sulfotrehalose, a novel osmolyte in Haloalkaliphili, Archaea,
J. Bacteriol., 179 (1997) 3146–3153.
- L.T. Smith, Role of osmolytes in adaptation of osmotically
stressed and chill-stressed listeria monocytogenes grown in
liquid media and on processed meat surfaces, Appl. Environ.
Microbiol., 62 (1996) 3088–3093.
- Y. Zhao, P. Zhao, Y. Wang, W. Qi, Isolation, identification, and
characterization of an organophosphorous pesticide degrading
bacterium, Enterobacter ludwigii M2, Adv. Mater. Res., 1051
(2014) 398–403.
- F. Kafilzadeh, A. Khezri, Biodegradation of aniline by
Enterobacter ludwigii KH-A5 isolated from the soil around shiraz
refinery, Iran, Global Nest J., 18 (2016) 697–707.
- T. Li, X.P. Deng, J.J. Wang, H. Zhao, L. Wang, K. Qian,
Biodegradation of 3,4-dichloroaniline by a novel Myroides
odoratimimus strain LWD09 with moderate salinity tolerance,
Water Air Soil Pollut., 223 (2012) 3271–3279.
- A. Roy, Comparative study of three rhizospheric bacteria
belonging to different genera, co-infecting a leguminous plant,
J. Invest. Genomics, 3 (2016) 1–12.
- K. Veenagayathri, N. Vasudevan, Effect of pH, nitrogen
sources and salts on the degradation of phenol by the bacterial
consortium under saline conditions, Int. J. Biotechnol. Biochem.,
6 (2010) 783–971.
- N. Shapir, R.T. Mandelbaum, H. Gottlieb, Atrazine degradation
in saline wastewater by Pseudomonas sp. strain ADP, J. Ind.
Microbiol. Biotechnol., 20 (1998) 153–159.
- L.F. Martins, R.S. Peixoto, Biodegradation of petroleum
hydrocarbons in hypersaline environments, Braz. J. Microbiol.,
43 (2012) 865–872.
- T.E. Radwan, A.M. Reyad, A.M. Essa, Bioremediation of the
nematicide oxamyl by Enterobacter ludwigii isolated from
agricultural wastewater, Egypt. J. Exp. Biol., 13 (2017) 19–30.
- O. Gur, M. Ozdal, O.F. Algur, Biodegradation of the synthetic
pyrethroid insecticide α-cypermethrin by Stenotrophomonas
maltophilia OG2, Turk. J. Biol., 38 (2014) 684–689.
- M. Cycon, M. Wojcik, Z. Piotrowska-Seget, Biodegradation
kinetics of the benzimidazole fungicide thiophanate-methyl
by bacteria isolated from loamy sand soil, Biodegradation,
22 (2011) 573–583.
- W. Hu, Q. Lu, G. Zhong, M. Hu, X. Yi, Biodegradation of
pyrethroids by a hydrolyzing carboxylesterase EstA from
Bacillus cereus BCC01, Appl. Sci., 9 (2019) 477–491.
- S. Chen, Y. Deng, C. Chang, J. Lee, Y. Cheng, Z. Cui, J. Zhou,
F. He, M. Hu, L. Zhang, Pathway and kinetics of cyhalothrin
biodegradation by Bacillus thuringiensis strain ZS-19, Sci. Rep.,
5 (2015) 1–10.
- W. Deng, D. Lin, K. Yao, H. Yuan, Z. Wang, J. Li, L. Zou,
X. Han, K. Zhou, L. He, X. Hu, Characterization of a novel
β-cypermethrin-degrading Aspergillus niger YAT strain and
the biochemical degradation pathway of β-cypermethrin, Appl.
Microbiol. Biotechnol., 99 (2015) 8187–8198.
- K.P. Talaro, Foundation in Microbiology: Basic Principles,
7th ed., McGraw-Hill Higher Education, New York, USA, 2008,
pp. 534.
- P. Shivanand, G. Mugeraya, Halophilic bacteria and their
compatible solutes – osmoregulation and potential applications,
Curr. Sci., 10 (2011) 1516–1521.
- L. Nissen, G.P. Martinez, M.J. Yebra, Sorbitol synthesis by an
engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon,
FEMS Microbiol. Lett., 249 (2005) 177–183.
- M.F. Roberts, Organic compatible solutes of halotolerant and
halophilic microorganisms, Saline Syst., 1 (2005) 5.
- E. Judy, N. Kishore, Biological wonders of osmolytes: the need
to know more, Biochem. Anal. Biochem., 5 (2016) 304.