References
- C.G. Daughton, Non-regulated water contaminants: emerging
research, Environ. Impact Assess. Rev., 24 (2004) 711–732.
- C.G. Daughton, T.A. Ternes, Pharmaceuticals and personal care
products in the environment: agents of subtle change?, Environ.
Health Perspect., 107 (1999) 907–937.
- K. Kummerer, Present Knowledge and Need for Further
Research, In: Pharmaceuticals in the Environment, Springer
Verlag, Heidelberg, 2001, pp. 239–245.
- S. Sulaiman, T. Shahwan, Mefenamic acid stability and removal
from wastewater using bentonite-supported nanoscale zerovalent
iron and activated charcoal, Desal. Wat. Treat., 97 (2017)
175–183.
- J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water
treatment: applications and emerging opportunities, Crit. Rev.
Solid State, 34 (2008) 43–69.
- X.-q. Li, D.W. Elliott, W.-x. Zhang, Zero-valent iron nanoparticles
for abatement of environmental pollutants: materials and
engineering aspects, Crit. Rev. Solid State, 31 (2006) 111–122.
- S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI)
and Pb(II) aqueous solutions using supported, nanoscale zerovalent
iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
- T. Shahwan, Ç. Üzüm, A.E. Eroglu, I. Lieberwirth, Synthesis
and characterization of bentonite/iron nanoparticles and their
application as adsorbent of cobalt ions, Appl. Clay Sci., 47 (2010)
257–262.
- Ç. Üzüm, T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott,
I. Lieberwirth, Synthesis and characterization of kaolinitesupported
zero-valent iron nanoparticles and their application
for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci.,
43 (2009) 172–181.
- E. Eren, Adsorption performance and mechanism in binding of
azo dye by raw bentonite, CLEAN – Soil Air Water, 38 (2010)
758–763.
- V.K. Gupta, Suhas, Application of low-cost adsorbents for dye
removal – a review, J. Environ. Manage., 90 (2009) 2313–2342.
- S. Sulaiman, M. Khamis, S. Nir, F. Lelario, L. Scrano, S.A. Bufo,
R. Karaman, Stability and removal of spironolactone from
wastewater, J. Environ. Sci. Health., Part A, 50 (2015) 1127–1135.
- V. Laurian, I. Silvia, M. Dana, A. Marcela, M. Daniela-Lucia,
Determination of spironolactone and canrenone in human
plasma by high-performance liquid chromatography with
mass spectrometry detection, Croat. Chem. Acta, 84 (2011)
361–366.
- S.A. Doggrell, L. Brown, The spironolactone renaissance, Expert
Opin. Invest. Drugs, 10 (2001) 243–254.
- S.J. Lloyd, V.F. Mauro, Spironolactone in the treatment of
congestive
heart failure, Ann. Pharmacother., 34 (2000)
1336–1340.
- R. Al-Saed, O. Zimmo, Process performance evaluation of the
contact stabilization system at Birzeit University, Int. J. Environ.
Pollut., 21(2004) 511–517.
- American Public Health Association, Standard Methods for
the Examination of Water and Wastewater, 21st ed., APHA,
Washington, D.C., USA, 2005.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of methylene blue on low-cost adsorbents: a review, J. Hazard.
Mater., 177 (2010) 70–80.
- H.j. Kim, H.-J. Hong, Y.-J. Lee, H.-J. Shin, J.-W. Yang, Degradation
of trichloroethylene by zero-valent iron immobilized in cationic
exchange membrane, Desalination, 223 (2008) 212–220.
- J.J. Zhan, T. Zheng, G. Piringer, C. Day, G.L. McPherson,
Y.F. Lu, K. Papadopoulos, V.T. John, Transport characteristics
of nanoscale functional zerovalent iron/silica composites for
in situ remediation of trichloroethylene, Environ. Sci. Technol.,
42 (2008) 8871–8876.
- G.D. Champion, G.G. Graham, Pharmacokinetics of nonsteroidal
anti-inflammatory drugs, Aust. N. Z. J. Med., 8 (1978)
94–100.
- United States Environmental Protection Agency (USEPA),
Wastewater Treatment Manuals: Primary, Secondary and Tertiary
Treatment, Author: Washington, D.C., 1997.
- Y. Pramar, V.D. Gupta, T. Zerai, Quantitation of spironolactone
in the presence of canrenone using high-performance liquid
chromatography, Drug Dev. Ind. Pharm., 17 (1991) 747–761.
- D.-M. Huang, T.-Z. Zhang, F.-J. Cui, W.-J. Sun, L.-M. Zhao,
M.-Y. Yang, Y.-J. Wang, Simultaneous identification and
quantification of canrenone and 11-α-hydroxy-canrenone by
LC-MS and HPLC-UVD, J. Biomed. Biotechnol., 2011 (2011) 7 p,
doi: 10.1155/2011/917232.
- L.E. Ramsay, J.R. Shelton, D. Wilkinson, M.J. Tidd, Canrenonethe
principal active metabolite of spironolactone, J. Clin.
Pharmacol., 3 (1976) 607–612.
- C. Noubactep, S. Caré, R.A. Crane, Nanoscale metallic iron for
environmental remediation: prospects and limitations, Water
Air Soil Pollut., 223 (2012) 1363–1382.
- S.M. Ponder, J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis,
N. Edelstein, W. Lukens, H. Nitsche, L.F. Rao, D.K. Shuh,
T.E. Mallouk, Surface chemistry and electrochemistry of supported
zerovalent iron nanoparticles in the remediation of aqueous
metal contaminants, Chem. Mater., 13 (2001) 479–486.
- W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd ed., Wiley,
New York, 1996.
- C.M. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard,
J. Antony, Y. Qiang, Morphology and electronic structure
of the oxide shell on the surface of iron nanoparticles, J. Am.
Chem. Soc., 131(2009) 8824–8832.
- E.E. Carpenter, S. Calvin, R.M. Stroud, V.G. Harris, Passivated
iron as core-shell nanoparticles, Chem. Mater., 15 (2003)
3245–3246.
- W. Liang, C. Dai, X. Zhou, Y. Zhang, Application of zero-valent
iron nanoparticles for the removal of aqueous zinc ions under
various experimental conditions, PLoS One, 9 (2014) 1–9.
- B.A. Balko, P.G. Tratnyek, Photoeffects on the reduction of
carbon tetrachloride by zero-valent iron, J. Phys. Chem. B, 102
(1998) 1459–1465.
- A. Ausavasukhi, T. Sooknoi, Oxidation of tetrahydrofuran to
butyrolactone catalyzed by iron-containing clay, Green Chem.,
17 (2015) 435–441.
- A. Tabak, B. Afsin, B. Caglar, E. Koksal, Characterization and
pillaring of a Turkish bentonite (Resadiye), J. Colloid Interface
Sci., 313 (2007) 5–11.
- Z.-x. Chen, X.-y. Jin, Z.L. Chen, M. Megharaj, R. Naidu, Removal
of methyl orange from aqueous solution using bentonitesupported
nanoscale zero-valent iron, J. Colloid Interface Sci.,
363 (2011) 601–607.
- Ç. Üzüm, T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott,
I. Lieberwirth, Synthesis and characterization of kaolinitesupported
zero-valent iron nanoparticles and their application
for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci.,
43 (2009) 172–181.
- X. Zhang, S. Lin, X.-Q. Lu, Z.-I. Chen, Removal of Pb(II) from
water using synthesized kaolin supported nanoscale zerovalent
iron, Chem. Eng. J., 163 (2010) 243–248.
- L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from
wastewater using bentonite-supported nanoscale zero-valent
iron, Water Res., 45 (2011) 866–892.
- A.T. Sdiri, T. Higashi, F. Jamoussi, Adsorption of copper and
zinc onto natural clay in single and binary systems, Int. J.
Environ. Sci. Technol., 11 (2014) 1081–1092.
- T. Shahwan, Sorption kinetics: obtaining a pseudo-second order
rate equation based on a mass balance approach, J. Environ.
Chem. Eng., 2 (2014) 1001–1006.
- H. Kim, H.J. Hong, J. Jung, S.H. Kim, J.W. Yang, Degradation
of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI)
immobilized in alginate bead, J. Hazard. Mater., 176 (2010)
1038–1043.
- A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a
carcinogenic textile dye, from aqueous solutions by maghemite
nanoparticles, J. Hazard. Mater., 15 (2010) 398–403.
- R. Venkatapathy, D.G. Bessingpas, S. Canonica, J.A. Perlinger,
Kinetic models for trichloroethylene transformation by zerovalent
iron, Appl. Catal., B., 37 (2002) 139–159.
- M.H. Al-Jabari, S. Sulaiman, S. Ali, R. Barakat, A. Mubarak,
S.A. Khan, Adsorption study of levofloxacin on reusable magnetic
nanoparticles: kinetics and antibacterial activity, J. Mol.
Liq., 291 (2019), doi: 10.1016/j.molliq.2019.111249.
- Z. Chia, Z. Wang, H. Chua, P. Bina, L. Lucian, Bentonitesupported
nanoscale zero-valent iron granulated electrodes
for industrial wastewater remediation, RSC Adv., 7 (2017)
44605–44613.
- M. Al-Jabari, I. Khalid, S. Sulaiman, I. Alawi, J. Shilo, Synthesis,
characterization, kinetic and thermodynamic investigation of
silica nanoparticles and their application in Mefenamic acid
removal from aqueous solution, Desal. Wat. Treat., 129 (2018)
160–167.