References

  1. J.R. Domínguez, J.B. de Heredia, T. González, F. Sanchez-Lavado, Evaluation of ferric chloride as a coagulant for cork processing wastewaters. Influence of the operating conditions on the removal of organic matter and settleability parameters, Ind. Eng. Chem. Res., 44 (2005) 6539–6548.
  2. J. Beltrán-Heredia, J. Sánchez-Martín, C. Solera-Hernández, Anionic surfactants removal by natural coagulant/flocculant products, Ind. Eng. Chem. Res.. 48 (2009) 5085–5092.
  3. H. Zhao, H. Liu, C. Hu, J. Qu, Effect of aluminum speciation and structure characterization on preferential removal of disinfection byproduct precursors by aluminum hydroxide coagulation, Environ. Sci. Technol., 43 (2009) 5067–5072.
  4. J. Duan, S. Shao, Ya-Li, L. Wang, P. Jiang, B. Liu, Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties, Iran. Polym. J., 21 (2012) 109–120.
  5. E.-S. Kim, Y. Liu, M. Gamal El-Din, Evaluation of membrane fouling for in-line filtration of oil sands process-affected water: the effects of pretreatment conditions, Environ. Sci. Technol., 46 (2012) 2877–2884.
  6. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability and effects, Environ. Toxicol. Chem., 27 (2008) 1825.
  7. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228–240.
  8. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications, Small, 7 (2011) 1876–1902.
  9. S. Clark, G.G. Mallick, Global Graphene Market (Product Type, Application, Geography) - Size, Share, Global Trends, Company Profiles, Demand, Insights, Analysis, Research, Report, Opportunities, Segmentation and Forecast, 2013 - 2020, Allied Market Research, 2014. Available at: https://www.google.com.br/search?hl=pt-bR&q=S.+Clark,+G.G.+Mallick,+Global+Graphene+Market+(Product+Type,+Application,+Geography)+-+Size,+Share,+Global+Trends,+Company+Profiles,+Demand,+Insights,+Analysis,+Research,+Report,+Opportunities,+Segmentation+ and (Accessed January 18, 2018).
  10. S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications, Carbon N. Y., 91 (2015) 122–143.
  11. F. Ahmed, D.F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study, J. Hazard. Mater., 256–257 (2013) 33–39.
  12. F. Gottschalk, T. Sun, B. Nowack, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies, Environ. Pollut., 181 (2013) 287–300.
  13. C. Burkart, W. von Tümpling, T. Berendonk, D. Jungmann, Nanoparticles in wastewater treatment plants: a novel acute toxicity test for ciliates and its implementation in risk assessment, Environ. Sci. Pollut. Res., 22 (2015) 7485–7494.
  14. J.T.K. Quik, I. Velzeboer, M. Wouterse, A.A. Koelmans, D. van de Meent, Heteroaggregation and sedimentation rates for nanomaterials in natural waters, Water Res., 48 (2014) 269–79.
  15. M.R. Wiesner, G.L. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomateirals, Environ. Sci. Technol., 40 (2006) 4337–4345.
  16. N.-Q. Puay, G. Qiu, Y.-P. Ting, Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor, J. Cleaner Prod., 88 (2015) 139–145.
  17. P.K. Westerhoff, M.a. Kiser, K. Hristovski, Nanomaterial removal and transformation during biological wastewater treatment, Environ. Eng. Sci., 30 (2013) 109–117.
  18. C. Zhang, Z. Hu, P. Li, S. Gajaraj, Governing factors affecting the impacts of silver nanoparticles on wastewater treatment, Sci. Total Environ., 572 (2016) 852–873.
  19. P.A. Neale, Å.K. Jämting, B.I. Escher, J. Herrmann, A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants, Water Sci. Technol., 68 (2013) 1440.
  20. M. Tan, G. Qiu, Y.-P. Ting, Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor, Bioresour. Technol., 185 (2015) 125–133.
  21. Y. Yang, Z. Yu, T. Nosaka, K. Doudrick, K. Hristovski, P. Herckes, P. Westerhoff, Interaction of carbonaceous nanomaterials with wastewater biomass, Front. Environ. Sci. Eng., (2015). doi:10.1007/s11783-015-0787-9.
  22. L. Hou, K. Li, Y. Ding, Y. Li, J. Chen, X. Wu, X. Li, Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction, Chemosphere, 87 (2012) 248–252.
  23. L. Hou, J. Xia, K. Li, J. Chen, X. Wu, X. Li, Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4 +-N reduction, Water Sci. Technol., 67 (2013) 254–260.
  24. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge - evidence and impacts, Waste Manage., 30 (2010) 504–20.
  25. V. Serrão Sousa, C. Corniciuc, M. Ribau Teixeira, The effect of TiO2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S, Water Res., 109 (2017) 1–12.
  26. J. Olabarrieta, O. Monzón, Y. Belaustegui, J.-I. Alvarez, S. Zorita, Removal of TiO2 nanoparticles from water by low pressure pilot plant filtration, Sci. Total Environ., 618 (2018) 551–560.
  27. R.J. Honda, V. Keene, L. Daniels, S.L. Walker, Removal of TiO2 nanoparticles during primary water treatment: role of coagulant type, dose and nanoparticle concentration, Environ. Eng. Sci., 31 (2014) 127–134.
  28. C. Zhang, J. Lohwacharin, S. Takizawa, Effect of ions on removal of TiO2 nanoparticles by coagulation and microfiltration, Environ. Eng. Sci., 35 (2018) 420–429.
  29. A. Popowich, Q. Zhang, X. Chris Le, Removal of nanoparticles by coagulation, J. Environ. Sci., 38 (2015) 168–171.
  30. L. Cumbal, A.K. SenGupta, Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect, Environ. Sci. Technol., 39 (2005) 6508–6515.
  31. H.T. Wang, Y.Y. Ye, J. Qi, F.T. Li, Y.L. Tang, Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters, Water Sci. Technol., 68 (2013) 1137–1143.
  32. Q. Sun, Y. Li, T. Tang, Z. Yuan, C.-P. Yu, Removal of silver nanoparticles by coagulation processes, J. Hazard. Mater., 261 (2013) 414–420.
  33. B. Xie, Z. Xu, W. Guo, Q. Li, Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles, Environ. Sci. Technol., 42 (2008) 2853–2859.
  34. S. Ghosh, H. Mashayekhi, P. Bhowmik, B. Xing, Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids, Langmuir, 26 (2010) 873–879.
  35. R. Chouari, D. Le Paslier, P. Daegelen, C. Dauga, J. Weissenbach, A. Sghir, Molecular analyses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of proteobacteria, Microb. Ecol., 60 (2010) 272–281.
  36. L. Zhang, J. Mao, Q. Zhao, S. He, J. Ma, Effect of AlCl3 concentration on nanoparticle removal by coagulation, J. Environ. Sci., 38 (2015) 103–109.
  37. F. Ahmed, C.M. Santos, R.A.M. V. Vergara, M.C.R. Tria, R. Advincula, D.F. Rodrigues, Antimicrobial applications of electroactive PVK-SWNT nanocomposites, Environ. Sci. Technol., 46 (2011) 1804–1810.
  38. I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells, Nanoscale, 4 (2012) 4746.
  39. A. Amirtharajah, K.M. Mills, Rapid-mix design for mechanisms of alum coagulation, J. AWWA, 74 (n.d.) 210–216.
  40. AWWA, Water Quality and Treatment, 6th ed., McGraw-Hill, New York, 2011.
  41. S. Bykkam, R.K. Venkateswara, S.C. CH, T. Thunugunta, Synthesis and characterization of graphene oxide and its antibacterial activity against Klebseilla and Staphylococus, Int. J. Adv. Biotechnol. Res., 4 (2013) 1005–1009.
  42. L. Duan, R. Hao, Z. Xu, X. He, A.S. Adeleye, Y. Li, Removal of graphene oxide nanomaterials from aqueous media via coagulation: effects of water chemistry and natural organic matter, Chemosphere, 168 (2017) 1051–1057.
  43. Y.L.F. Musico, C.M. Santos, M.L.P. Dalida, D.F. Rodrigues, Improved removal of lead(ii) from water using a polymer - based graphene oxide nanocomposite, J. Mater. Chem. A, 1 (2013) 3789.
  44. K.A.D. Guzman, M.P. Finnegan, J.F. Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol., 40 (2006) 7688–7693.
  45. M. Yan, D. Wang, J. Ni, J. Qu, C.W.K. Chow, H. Liu, Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics, Water Res., 42 (2008) 3361–3370.
  46. J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation using aluminum salts - I. Hydrolytic reactions of alum and polyaluminum chloride, Water Res., 24 (1990) 1519–1526.
  47. L. Chekli, M. Roy, L.D. Tijing, E. Donner, E. Lombi, H.K. Shon, Agglomeration behaviour of titanium dioxide nanoparticles in river waters: a multi-method approach combining light scattering and field-flow fractionation techniques, J. Environ. Manage., 159 (2015) 135–142.
  48. S.C. Smith, F. Ahmed, K.M. Gutierrez, D. Frigi Rodrigues, A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: potential environmental applications, Chem. Eng. J., 240 (2014) 147–154.
  49. S. Pasche, J. Vörös, H.J. Griesser, N.D. Spencer, M. Textor, Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces, J. Phys. Chem., B, 109 (2005) 17545–17552.
  50. J. Gregory, Particles in Water, Taylor & Francis, 2005.