References
- J.R. Domínguez, J.B. de Heredia, T. González, F. Sanchez-Lavado, Evaluation of ferric chloride as a coagulant for cork
processing wastewaters. Influence of the operating conditions
on the removal of organic matter and settleability parameters,
Ind. Eng. Chem. Res., 44 (2005) 6539–6548.
- J. Beltrán-Heredia, J. Sánchez-Martín, C. Solera-Hernández,
Anionic surfactants removal by natural coagulant/flocculant
products, Ind. Eng. Chem. Res.. 48 (2009) 5085–5092.
- H. Zhao, H. Liu, C. Hu, J. Qu, Effect of aluminum speciation
and structure characterization on preferential removal of
disinfection byproduct precursors by aluminum hydroxide
coagulation, Environ. Sci. Technol., 43 (2009) 5067–5072.
- J. Duan, S. Shao, Ya-Li, L. Wang, P. Jiang, B. Liu, Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced
mechanical, thermal and electrical properties, Iran. Polym. J.,
21 (2012) 109–120.
- E.-S. Kim, Y. Liu, M. Gamal El-Din, Evaluation of membrane
fouling for in-line filtration of oil sands process-affected water:
the effects of pretreatment conditions, Environ. Sci. Technol.,
46 (2012) 2877–2884.
- S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes,
R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin,
J.R. Lead, Nanomaterials in the environment: behavior, fate,
bioavailability and effects, Environ. Toxicol. Chem., 27 (2008)
1825.
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry
of graphene oxide, Chem. Soc. Rev., 39 (2010) 228–240.
- X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan,
F. Boey, H. Zhang, Graphene-based materials: synthesis,
characterization, properties, and applications, Small, 7 (2011)
1876–1902.
- S. Clark, G.G. Mallick, Global Graphene Market (Product Type,
Application, Geography) - Size, Share, Global Trends, Company
Profiles, Demand, Insights, Analysis, Research, Report,
Opportunities, Segmentation and Forecast, 2013 - 2020, Allied
Market Research, 2014. Available at: https://www.google.com.br/search?hl=pt-bR&q=S.+Clark,+G.G.+Mallick,+Global+Graphene+Market+(Product+Type,+Application,+Geography)+-+Size,+Share,+Global+Trends,+Company+Profiles,+Demand,+Insights,+Analysis,+Research,+Report,+Opportunities,+Segmentation+
and (Accessed January 18, 2018).
- S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for
removal of chemical and biological contaminants from water:
a review of mechanisms and applications, Carbon N. Y., 91
(2015) 122–143.
- F. Ahmed, D.F. Rodrigues, Investigation of acute effects of
graphene oxide on wastewater microbial community: a case
study, J. Hazard. Mater., 256–257 (2013) 33–39.
- F. Gottschalk, T. Sun, B. Nowack, Environmental concentrations
of engineered nanomaterials: review of modeling and analytical
studies, Environ. Pollut., 181 (2013) 287–300.
- C. Burkart, W. von Tümpling, T. Berendonk, D. Jungmann,
Nanoparticles in wastewater treatment plants: a novel
acute toxicity test for ciliates and its implementation in risk
assessment, Environ. Sci. Pollut. Res., 22 (2015) 7485–7494.
- J.T.K. Quik, I. Velzeboer, M. Wouterse, A.A. Koelmans,
D. van de Meent, Heteroaggregation and sedimentation rates for
nanomaterials in natural waters, Water Res., 48 (2014) 269–79.
- M.R. Wiesner, G.L. Lowry, P. Alvarez, D. Dionysiou, P. Biswas,
Assessing the risks of manufactured nanomateirals, Environ.
Sci. Technol., 40 (2006) 4337–4345.
- N.-Q. Puay, G. Qiu, Y.-P. Ting, Effect of zinc oxide nanoparticles
on biological wastewater treatment in a sequencing batch
reactor, J. Cleaner Prod., 88 (2015) 139–145.
- P.K. Westerhoff, M.a. Kiser, K. Hristovski, Nanomaterial
removal and transformation during biological wastewater
treatment, Environ. Eng. Sci., 30 (2013) 109–117.
- C. Zhang, Z. Hu, P. Li, S. Gajaraj, Governing factors affecting
the impacts of silver nanoparticles on wastewater treatment,
Sci. Total Environ., 572 (2016) 852–873.
- P.A. Neale, Å.K. Jämting, B.I. Escher, J. Herrmann, A review of
the detection, fate and effects of engineered nanomaterials in
wastewater treatment plants, Water Sci. Technol., 68 (2013) 1440.
- M. Tan, G. Qiu, Y.-P. Ting, Effects of ZnO nanoparticles
on wastewater treatment and their removal behavior in a
membrane bioreactor, Bioresour. Technol., 185 (2015) 125–133.
- Y. Yang, Z. Yu, T. Nosaka, K. Doudrick, K. Hristovski, P. Herckes,
P. Westerhoff, Interaction of carbonaceous nanomaterials
with wastewater biomass, Front. Environ. Sci. Eng., (2015).
doi:10.1007/s11783-015-0787-9.
- L. Hou, K. Li, Y. Ding, Y. Li, J. Chen, X. Wu, X. Li, Removal of silver
nanoparticles in simulated wastewater treatment processes and
its impact on COD and NH4 reduction, Chemosphere, 87 (2012)
248–252.
- L. Hou, J. Xia, K. Li, J. Chen, X. Wu, X. Li, Removal of ZnO
nanoparticles in simulated wastewater treatment processes and
its effects on COD and NH4
+-N reduction, Water Sci. Technol.,
67 (2013) 254–260.
- S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered
nanoparticles in wastewater and wastewater sludge - evidence
and impacts, Waste Manage., 30 (2010) 504–20.
- V. Serrão Sousa, C. Corniciuc, M. Ribau Teixeira, The effect of
TiO2 nanoparticles removal on drinking water quality produced
by conventional treatment C/F/S, Water Res., 109 (2017) 1–12.
- J. Olabarrieta, O. Monzón, Y. Belaustegui, J.-I. Alvarez, S. Zorita,
Removal of TiO2 nanoparticles from water by low pressure pilot
plant filtration, Sci. Total Environ., 618 (2018) 551–560.
- R.J. Honda, V. Keene, L. Daniels, S.L. Walker, Removal of TiO2
nanoparticles during primary water treatment: role of coagulant
type, dose and nanoparticle concentration, Environ. Eng. Sci.,
31 (2014) 127–134.
- C. Zhang, J. Lohwacharin, S. Takizawa, Effect of ions on removal
of TiO2 nanoparticles by coagulation and microfiltration,
Environ. Eng. Sci., 35 (2018) 420–429.
- A. Popowich, Q. Zhang, X. Chris Le, Removal of nanoparticles
by coagulation, J. Environ. Sci., 38 (2015) 168–171.
- L. Cumbal, A.K. SenGupta, Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of
Donnan membrane effect, Environ. Sci. Technol., 39 (2005)
6508–6515.
- H.T. Wang, Y.Y. Ye, J. Qi, F.T. Li, Y.L. Tang, Removal of titanium
dioxide nanoparticles by coagulation: effects of coagulants,
typical ions, alkalinity and natural organic matters, Water Sci.
Technol., 68 (2013) 1137–1143.
- Q. Sun, Y. Li, T. Tang, Z. Yuan, C.-P. Yu, Removal of silver
nanoparticles by coagulation processes, J. Hazard. Mater.,
261 (2013) 414–420.
- B. Xie, Z. Xu, W. Guo, Q. Li, Impact of natural organic matter on
the physicochemical properties of aqueous C60 nanoparticles,
Environ. Sci. Technol., 42 (2008) 2853–2859.
- S. Ghosh, H. Mashayekhi, P. Bhowmik, B. Xing, Colloidal
stability of Al2O3 nanoparticles as affected by coating of
structurally different humic acids, Langmuir, 26 (2010)
873–879.
- R. Chouari, D. Le Paslier, P. Daegelen, C. Dauga, J. Weissenbach,
A. Sghir, Molecular analyses of the microbial community
composition of an anoxic basin of a municipal wastewater
treatment plant reveal a novel lineage of proteobacteria, Microb.
Ecol., 60 (2010) 272–281.
- L. Zhang, J. Mao, Q. Zhao, S. He, J. Ma, Effect of AlCl3
concentration on nanoparticle removal by coagulation,
J. Environ. Sci., 38 (2015) 103–109.
- F. Ahmed, C.M. Santos, R.A.M. V. Vergara, M.C.R. Tria,
R. Advincula, D.F. Rodrigues, Antimicrobial applications
of electroactive PVK-SWNT nanocomposites, Environ. Sci.
Technol., 46 (2011) 1804–1810.
- I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, Toxicity
of a polymer–graphene oxide composite against bacterial
planktonic cells, biofilms, and mammalian cells, Nanoscale,
4 (2012) 4746.
- A. Amirtharajah, K.M. Mills, Rapid-mix design for mechanisms
of alum coagulation, J. AWWA, 74 (n.d.) 210–216.
- AWWA, Water Quality and Treatment, 6th ed., McGraw-Hill,
New York, 2011.
- S. Bykkam, R.K. Venkateswara, S.C. CH, T. Thunugunta,
Synthesis and characterization of graphene oxide and its
antibacterial activity against Klebseilla and Staphylococus,
Int. J. Adv. Biotechnol. Res., 4 (2013) 1005–1009.
- L. Duan, R. Hao, Z. Xu, X. He, A.S. Adeleye, Y. Li, Removal
of graphene oxide nanomaterials from aqueous media via
coagulation: effects of water chemistry and natural organic
matter, Chemosphere, 168 (2017) 1051–1057.
- Y.L.F. Musico, C.M. Santos, M.L.P. Dalida, D.F. Rodrigues,
Improved removal of lead(ii) from water using a polymer
- based graphene oxide nanocomposite, J. Mater. Chem. A,
1 (2013) 3789.
- K.A.D. Guzman, M.P. Finnegan, J.F. Banfield, Influence of
surface potential on aggregation and transport of titania
nanoparticles, Environ. Sci. Technol., 40 (2006) 7688–7693.
- M. Yan, D. Wang, J. Ni, J. Qu, C.W.K. Chow, H. Liu, Mechanism
of natural organic matter removal by polyaluminum chloride:
effect of coagulant particle size and hydrolysis kinetics, Water
Res., 42 (2008) 3361–3370.
- J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of
coagulation using aluminum salts - I. Hydrolytic reactions
of alum and polyaluminum chloride, Water Res., 24 (1990)
1519–1526.
- L. Chekli, M. Roy, L.D. Tijing, E. Donner, E. Lombi, H.K. Shon,
Agglomeration behaviour of titanium dioxide nanoparticles
in river waters: a multi-method approach combining light
scattering and field-flow fractionation techniques, J. Environ.
Manage., 159 (2015) 135–142.
- S.C. Smith, F. Ahmed, K.M. Gutierrez, D. Frigi Rodrigues,
A comparative study of lysozyme adsorption with graphene,
graphene oxide, and single-walled carbon nanotubes:
potential environmental applications, Chem. Eng. J.,
240 (2014) 147–154.
- S. Pasche, J. Vörös, H.J. Griesser, N.D. Spencer, M. Textor,
Effects of ionic strength and surface charge on protein
adsorption at PEGylated surfaces, J. Phys. Chem., B, 109 (2005)
17545–17552.
- J. Gregory, Particles in Water, Taylor & Francis, 2005.