References
- L. Lu, D. Xing, B. Liu, N. Ren, Enhanced hydrogen production
from waste activated sludge by cascade utilization of organic
matter in microbial electrolysis cells, Water Res., 46 (2012)
1015–1026.
- L. Lu, D. Xing, N. Ren, Pyrosequencing reveals highly diverse
microbial communities in microbial electrolysis cells involved
in enhanced H2 production from waste activated sludge, Water
Res., 46 (2012) 2425–2434.
- D. Wang, Y. Duan, Q. Yang, Y. Liu, B. Ni, Q. Wang, G. Zeng,
X. Li, Z. Yuan, Free ammonia enhances dark fermentative
hydrogen production from waste activated sludge, Water Res.,
133 (2018) 272–281.
- R. Sun, D. Xing, J. Jia, A. Zhou, L. Zhang, N. Ren, Methane
production and microbial community structure for alkaline
pretreated waste activated sludge, Bioresour. Technol., 169 (2014)
496–501.
- A.K. Wahidunnabi, C. Eskicioglu, High pressure homogenization
and two-phased anaerobic digestion for enhanced
biogas conversion from municipal waste sludge, Water Res.,
66 (2014) 430–446.
- Y. Wang, J. Zhao, D. Wang, Y. Liu, Q. Wang, B. Ni, F. Chen,
Q. Yang, X. Li, G. Zeng, Z. Yuan, Free nitrous acid promotes
hydrogen production from dark fermentation of waste activated
sludge, Water Res., 145 (2018) 113–124.
- X. Dai, X. Li, D. Zhang, Y. Chen, L. Dai, Simultaneous
enhancement of methane production and methane content
in biogas from waste activated sludge and perennial ryegrass
anaerobic co-digestion: the effects of pH and C/N ratio,
Bioresour. Technol., 216 (2016) 323–330.
- X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, Optimizing feeding
composition and carbon-nitrogen ratios for improved methane
yield during anaerobic co-digestion of dairy, chicken manure
and wheat straw, Bioresour. Technol., 120 (2012) 78–83.
- S. Astals, M. Esteban-Gutierrez, T. Fernandez-Arevalo, E. Aymerich,
J.L. Garcia-Heras, J. Mata-Ahiarez, Anaerobic digestion
of seven different sewage sludges: a biodegradability and
modelling study, Water Res., 47 (2013) 6033–6043.
- M. Pohl, K. Heeg, J. Mumme, Anaerobic digestion of wheat
straw - performance of continuous solid-state digestion,
Bioresour. Technol., 146 (2013) 408–415.
- E. Baker, J.M. Keisler, Cellulosic biofuels: expert views on
prospects for advancement, Energy, 36 (2011) 595–605.
- Y. Xi, Z. Chang, X. Ye, R. Xu, J. Du, G. Chen, Methane
production from wheat straw with anaerobic sludge by heme
supplementation, Bioresour. Technol., 172 (2014) 91–96.
- M. Kim, C. Liu, J.W. Noh, Y. Yang, S. Oh, K. Shimizu, D.Y. Lee,
Z. Zhang, Hydrogen and methane production from untreated
rice straw and raw sewage sludge under thermophilic anaerobic
conditions, Int. J. Hydrog. Energy, 38 (2013) 8648–8656.
- M. Kim, Y. Yang, M.S. Morikawa-Sakura, Q. Wang, M.V. Lee,
D.Y. Lee, C. Feng, Y. Zhou, Z. Zhang, Hydrogen production by
anaerobic co-digestion of rice straw and sewage sludge, Int. J.
Hydrog. Energy, 37 (2012) 3142–3149.
- N. Alemahdi, H.C. Man, N. Abd Rahman, N. Nasirian, Y. Yang,
Enhanced mesophilic bio-hydrogen production of raw rice
straw and activated sewage sludge by co-digestion, Int. J.
Hydrog. Energy, 40 (2015) 16033–16044.
- Z.N. Abudi, Z. Hu, N. Sun, B. Xiao, N. Rajaa, C. Liu, D. Guo,
Batch anaerobic co-digestion of OFMSW (organic fraction of
municipal solid waste), TWAS (thickened waste activated sludge)
and RS (rice straw): influence of TWAS and RS pretreatment
and mixing ratio, Energy, 107 (2016) 131–140.
- X. Dai, C. Hu, D. Zhang, L. Dai, N. Duan, Impact of a high
ammonia-ammonium-pH system on methane-producing
archaea and sulfate-reducing bacteria in mesophilic anaerobic
digestion, Bioresour. Technol., 245 (2017) 598–605.
- G. Wang, X. Dai, D. Zhang, Q. He, B. Dong, N. Li, N. Ye, Twophase
high solid anaerobic digestion with dewatered sludge:
improved volatile solid degradation and specific methane generation
by temperature and pH regulation, Bioresour. Technol.,
259 (2018) 253–258.
- H.K. Goering, P.J. Van soest, Forage Fiber Analysis, in
Agriculture Handbook, Agricultural Research Services, Department
of Agriculture, USA, 1970.
- L. Wei, X. Li, J. Yi, Z. Yang, Q. Wang, W. Ma, A simple approach
for the efficient production of hydrogen from Taihu Lake
Microcystis spp. blooms, Bioresour. Technol., 139 (2013) 136–140.
- A.F. Yakunin, P.C. Hallenbeck, Purification and characterization
of pyruvate oxidoreductase from the photosynthetic bacterium
Rhodobacter capsulatus, Biochim. Biophys. Acta-Bioenerg., 1409
(1998) 39–49.
- H.G. Wood, B. Jacobson, B.I. Gerwin, D.B. Northrop, Oxaloacetate
transcarboxylase from Propionibacterium, Method
Enzymol., 13 (1969) 215–230.
- Y. Miron, G. Zeeman, J.B. Van Lier, G. Lettinga, The role of
sludge retention time in the hydrolysis and acidification of
lipids, carbohydrates and proteins during digestion of primary
sludge in CSTR systems, Water Res., 34 (2000) 1705–1713.
- T. Ghose, Measurement of cellulase activities, Pure Appl.
Chem., 59 (1987) 257–268.
- X. Wang, Y. Zhang, J. Zhou, T. Zhang, M. Chen, Regeneration of
elemental sulfur in a simultaneous sulfide and nitrate removal
reactor under different dissolved oxygen conditions, Bioresour.
Technol., 182 (2015) 75–81.
- M.M. Estevez, R. Linjordet, J. Morken, Effects of steam
explosion and co-digestion in the methane production from
Salix by mesophilic batch assays, Bioresour. Technol., 104 (2012)
749–756.
- Yadvika, Santosh, T.R. Sreekrishnan, S. Kohli, V. Rana,
Enhancement of biogas production from solid substrates using
different techniques - a review, Bioresour. Technol., 95 (2004)
1–10.
- A. Wilkie, E. Colleran, Pilot-scale digestion of pig slurry
supernatant using an upflow anaerobic filter, Environ. Technol.
Lett., 7 (1986) 65–76.
- F. Di Maria, M. Barratta, Boosting methane generation by
co-digestion of sludge with fruit and vegetable waste: internal
environment of digester and methanogenic pathway, Waste
Manage., 43 (2015) 130–136.
- Y. Maspolim, Y. Zhou, C. Guo, K. Xiao, W.J. Ng, Determination
of the archaeal and bacterial communities in two-phase
and single-stage anaerobic systems by 454 pyrosequencing, J.
Environ. Sci., 36 (2015) 121–129.
- T. Kindaichi, T. Ito, S. Okabe, Ecophysiological interaction
between nitrifying bacteria and heterotrophic bacteria in
autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization, Appl. Environ.
Microbiol., 70 (2004) 1641–1650.