References

  1. S. Vaalgamaa, A.V. Vähätalo, N. Perkola, S. Huhtala, Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water, Sci. Total Environ., 409 (2011) 3043−3048.
  2. S. Fujii, S. Tanaka, N.P.H. Lien, Y. Qiu, C. Polprasert, New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds-a review paper, J. Water Supply, 56 (2007) 313–326.
  3. E.F. Houtz, C.P. Higgins, J.A. Field, D.L. Sedlak, Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil, Environ. Sci. Technol., 47 (2013) 8187–8195.
  4. K. Prevedouros, I.T. Cousins, R.C. Buck, S.H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates, Environ. Sci. Technol., 40 (2006) 32–44.
  5. K. Kannan, L. Tao, E. Sinclair, S.D. Pastva, D.J. Jude, J.P. Giesy, Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain, Arch. Environ. Contam. Toxicol., 48 (2005) 559−566.
  6. J.M. Conder, R.A. Hoke, W. de Wolf, M.H. Russell, R.C. Buck, Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds, Environ. Sci. Technol., 42 (2008) 995−1003.
  7. T. Chen, L. Zhang, J. Yue, Z. Lv, W. Xia, Y. Wan, Y. Li, S. Xu, Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring, Reprod. Toxicol., 33 (2012) 538−545.
  8. L. Mhadhbi, D. Rial, S. Pérez, R. Beiras, Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima, J. Environ. Monit., 14 (2012) 1375−1382.
  9. S.M. Bartell, A.M. Calafat, C. Lyu, K. Kato, P. Barry Ryan, K. Steenland, Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia, Environ. Health Persp., 118 (2010) 222.
  10. S. Deng, Y. Nie, Z. Du, Q. Huang, P. Meng, B. Wang, G. Yu, Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bambooderived granular activated carbon, J. Hazard. Mater., 282 (2014) 150–157.
  11. C.Y. Tang, Q.S. Fu, A.P. Robertson, C.S. Criddle, J.O. Leckie, Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater, Environ. Sci. Technol., 40 (2006) 7343–7349.
  12. C.Y. Tang, Q.S. Fu, C.S. Criddle, J.O. Leckie, Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater, Environ. Sci. Technol., 41 (2007) 2008–2014.
  13. F. Hao, W. Guo, A. Wang, Y. Leng, H. Li, Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant, Ultrason. Sonochem., 21 (2014) 554–558.
  14. S. Rayne, K. Forest, Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods, J. Environ. Sci. Health, 44 (2009) 1145–1199.
  15. C.D. Vecitis, H. Park, J. Cheng, B.T. Mader, M.R. Hoffmann, Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces, J. Phys. Chem. C, 112 (2008) 16850–16857.
  16. C.D. Vecitis, Y. Wang, J. Cheng, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctanesulfonate in aqueous filmforming foams, Environ. Sci. Technol., 44 (2009) 432–438.
  17. L.M. Colosi, R.A. Pinto, Q. Huang, W.J. Weber Jr, Peroxidase mediated degradation of perfluorooctanoic acid, Environ. Toxicol. Chem., 28 (2009) 264–271.
  18. H.F. Schroder, Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents, J. Chromatogr. A, 1020 (2003) 131–151.
  19. J. Liu, S.M. Avendano, Microbial degradation of polyfluoroalkyl chemicals in the environment: a review, Environ. Int., 61 (2013) 98–114.
  20. B.M. Allred, J.R. Lang, M.A. Barlaz, J.A. Field, Physical and biological release of poly-and perfluoroalkyl substances (PFASs) from municipal solid waste in anaerobic model landfill reactors, Environ. Sci. Technol., 49 (2015) 7648–7656.
  21. X. Xu, J. Zou, X. Zhao, X. Jiang, F. Jiao, J. Yu, Q. Liu, J. Teng, Facile assembly of three-dimensional cylindrical egg white embedded graphene oxide composite with good reusability for aqueous adsorption of rare earth elements, Colloid Surf., A, 570 (2019) 127–140.
  22. X. Zhao, X. Xu, J. Teng, N. Zhou, Z. Zhou, X. Jiang, F. Jiao, J. Yu, Three-dimensional porous graphene oxide-maize amylopectin composites with controllable pore-sizes and good adsorptiondesorption properties: facile fabrication and reutilization, and the adsorption mechanism, Ecotoxicol. Environ. Saf., 176 (2019) 11–19.
  23. X. Zhao, X. Xu, X. Jiang, J. Teng, J. Yu, Facile fabrication of three-dimensional and recyclable graphene oxide-melamine composites with high removal efficiency, Desal. Wat. Treat., 148 (2019) 188–194.
  24. X. Ding, Y. Hua, Y. Chen, C. Zhang, X. Kong, Heavy metal complexation of thiol-containing peptides from soy glycinin hydrolysates, Int. J. Mol. Sci., 16 (2015) 8040–8058.
  25. S. Kundu, I.H. Chowdhury, P.K. Sinha, M.K. Naskar, Effect of organic acid-modified mesoporous alumina toward fluoride ions removal from water, J. Chem. Eng. Data, 62 (2017) 2067–2074.
  26. A. Mohseni-Bandpi, B. Kakavandi, R.R. Kalantary, A. Azari, A. Keramati, Development of a novel magnetite-chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization, RSC Adv., 5 (2015) 73279–73289.
  27. C. Zhang, Y. Li, T. Wang, Y. Jiang, H. Wang, Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent, Appl. Surf. Sci., 363 (2016) 507–515.
  28. Y. Zhang, X. Lin, Q. Zhou, X. Luo, Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginate-La particles fabricated via electro-coextrusion, Appl. Surf. Sci., 389 (2016) 34–45.
  29. Y. Li, P. Zhang, Q. Du, X. Peng, T. Liu, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Adsorption of fluoride from aqueous solution by graphene, J. Colloid Interface Sci., 363 (2011) 348–354.
  30. Z. Ruan, Y. Tian, J. Ruan, G. Cui, K. Iqbal, A. Iqbal, H. Ye, Z. Yang, S. Yan, Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution, Appl. Surf. Sci., 412 (2017) 578–590.
  31. T. Zhang, Q. Li, H. Xiao, H. Lu, Y. Zhou, Synthesis of Li-Al layered double hydroxides (LDHs) for efficient fluoride removal, Ind. Eng. Chem. Res., 51 (2012) 11490–11498.
  32. J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI), ACS Sustain. Chem. Eng., 5 (2017) 7165–7174.
  33. H. Gao, R. Cao, X. Xu, S. Zhang, J. Xue, T. Hayat, N.S. Alharbi, J. Li, Surface area- and structure-dependent effects of LDH for highly efficient dye removal, ACS Sustain. Chem. Eng., 7 (2019) 905–915.
  34. J.S. Valente, J. Hernandez-Cortez, M.S. Cantu, G. Ferrat, E. Lopez-Salinas, Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts, Catal. Today, 150 (2010) 340–345.
  35. S. He, Y. Zhao, M. Wei, D.G. Evans, X. Duan, Fabrication of hierarchical layered double hydroxide framework on aluminum foam as a structured adsorbent for water treatment, Ind. Eng. Chem. Res., 51 (2011) 285–291.
  36. Q. Zhao, Z. Chang, X. Lei, X. Sun, Adsorption behavior of thiophene from aqueous solution on carbonate- and dodecylsulfateIntercalated ZnAl layered double hydroxides, Ind. Eng. Chem. Res., 50 (2011) 10253–10258.
  37. M. Dadwhal, M. Sahimi, T.T. Tsotsis, Adsorption isotherms of Arsenic on conditioned layered double hydroxides in the presence of various competing ions, Ind. Eng. Chem. Res., 50 (2011) 2220–2226.
  38. Z. Gao, K. Sasaki, X. Qiu, Structural memory effect of Mg–Al and Zn–Al layered double hydroxides in the presence of different natural humic acids: process and mechanism, Langmuir, 34 (2018) 5386–5395.
  39. S. Huang, S. Song, R. Zhang, T. Wen, X. Wang, S. Yu, W. Song, T. Hayat, A. Alsaedi, X. Wang, Construction of layered double hydroxides/hollow carbon microsphere composites and its applications for mutual removal of Pb(II) and humic acid from aqueous solutions, ACS Sustain. Chem. Eng., 5 (2017) 11268–11279.
  40. H. Lu, Z. Zhu, H. Zhang, J. Zhu, Y. Qiu, L. Zhu, S. Küppers, Fenton like catalysis and oxidation/adsorption performances of acetaminophen and arsenic pollutants in water on a multimetal Cu-Zn-Fe-LDH, ACS Appl. Mater. Interfaces, 8 (2016) 25343–25352.
  41. Y. Chuang, Y. Tzou, M. Wang, C. Liu, P. Chiang, Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH, Ind. Eng. Chem. Res., 47 (2008) 3813–3819.
  42. C. Jing, Y. Chen, X. Zhang, X. Guo, X. Liu, B. Dong, F. Dong, X. Zhang, Y. Liu, S. Li, Y. Zhang, Low carbonate contaminative and ultrasmall NiAl LDH prepared by acid salt treatment with high adsorption capacity of methyl orange, Ind. Eng. Chem. Res., 58 (2019) 11985–11998.
  43. Q. Wang, X. Wang, C. Shi, LDH Nanoflower lantern derived from ZIF-67 and its application for adsorptive removal of organics from water, Ind. Eng. Chem. Res., 57 (2018) 12478–12484.
  44. S. Britto, P.V. Kamath, Polytypism in the Lithium−Aluminum layered double hydroxides: the [LiAl2(OH)6]+ layer as a structural synthon, Inorg. Chem., 50 (2011) 5619–5627.
  45. S. Mandal, S. Mayadevi, Adsorption of fluoride ions by Zn-Al layered double hydroxides, Appl. Clay Sci., 40 (2008) 54–62.
  46. J. Zhou, Y. Cheng, J. Yu, G. Liu, Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water, J. Mater. Chem., 21 (2011) 19353–19361.