References

  1. Turkish Statistical Institute (TUIK), Available at: http://www.tuik.gov.tr/UstMenu.do?metod=temelist 2017 (accessed 17.11.2017).
  2. Z. Demirel, Integrated hydrogeological and hydrochemical assessment of the groundwater within the International Protected Göksu Delta, Southern Turkey, Manas J. Eng. Sci., 2 (2010) 15–32.
  3. M. Cobaner, R. Yurtal, A. Dogan, L.H. Motz, Three dimensional simulation of seawater intrusion in coastal aquifers: a case study in the Goksu Deltaic Plain, J. Hydrol., 464 (2012) 262–280.
  4. Z. Demirel, The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey, J. Environ. Manage., 70 (2004) 275–282.
  5. Z. Ayas, N.E. Barlas, D. Kolankaya, Determination of organochlorine pesticide residues in various environments and organisms in Göksu Delta, Turkey, Aquat. Toxicol., 39 (1997) 171–181.
  6. G. Seckin, T. Yilmaz, B. Sari, C.B. Ersu, Dissolved nutrient distributions in groundwater in the Mediterranean coastal plains - the case of Silifke, Turkey, CLEAN – Soil Air Water, 38 (2010) 1137–1145.
  7. Z.A. Demirel, Ö. Olcay, Z. Özpinar, Investigation of groundwater pollution in a protected area in Turkey, the Göksu Delta, Gazi Univ. J. Sci., 24 (2011) 17–27.
  8. G. Seckin, T. Yilmaz, B. Sari, C.B. Ersu, Groundwater hydrochemistry at the Mediterranean coastal plains—the case of Silifke, Turkey, Desalination, 253 (2010) 164–169.
  9. R. Barzegar, J. Adamowski, A.A. Moghaddam, Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran, Stochastic Environ. Res. Risk Assess., 30 (2016) 1797–1819.
  10. A. Sheena, M. Ramalingam, B. Anuradha, Groundwater potential evaluation using fuzzy inference system, Desal. Wat. Treat., 122 (2018) 268–276.
  11. A. Jalalkamali, M. Moradi, N. Moradi, Application of several artificial intelligence models and ARIMAX model for forecasting drought using the standardized precipitation index, Int. J. Environ. Sci. Technol., 12 (2015) 1201–1210.
  12. A.K. Lohani, N.K. Goel, K.K.S. Bhatia, Improving real time flood forecasting using fuzzy inference system, J. Hydrol., 509 (2014) 25–41.
  13. E. Tapoglou, G.P. Karatzas, I.C. Trichakis, E.A. Varouchakis, A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation, J. Hydrol., 519 (2014) 3193–3203.
  14. Ch.N. Stefanakos, E. Vanem, Nonstationary fuzzy forecasting of wind and wave climate in very long-term scales, J. Ocean Eng. Sci., 3 (2018) 144–155.
  15. R. Srinivas, P. Bhakar, A.P. Singh, Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool, Aquat. Procedia, 4 (2015) 1023–1030.
  16. V. Wagh, D. Panaskar, A. Muley, S. Mukate, S. Gaikwad, Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India, Groundwater Sustainable Dev., 7 (2018) 436–445.
  17. T. Chanapathi, S. Thatikonda, V.P. Pandey, S. Shrestha, Fuzzy-based approach for evaluating groundwater sustainability of Asian cities, Sustainable Cities Soc., 44 (2019) 321–331.
  18. J.K. Chaudhary, Estimation of groundwater contamination using fuzzy logic: a case study of Haridwar, India, Groundwater Sustainable Dev., 8 (2019) 644–653.
  19. K.-J. Lee, S.-T. Yun, S.Y. Yu, K.-H. Kim, J.-H. Lee, S.-H. Lee, The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea, J. Hydrol., 569 (2019) 685–697.
  20. S. Azimi, M.A. Moghaddam, S.H. Monfared, Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering, J. Contam. Hydrol. 220 (2019) 6–17.
  21. C. Güler, M.A. Kurt, M. Alpaslan, C. Akbulut, Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques, J. Hydrol., 414 (2012) 435–451.
  22. General Directorate for Protection of Natural Assets Urbanisation, Available at: http://www.csb.gov.tr/gm/tabiat/index.php?Sayfa=sayfa&Tur=webmenu&Id=194, 2017 (accessed 10.11.2017).
  23. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington, D.C., USA, 2005.
  24. H.-J. Zimmermann, Fuzzy set theory, Wiley Interdiscip. Rev. Comput. Stat., 2 (2010) 317–332.
  25. C. Kahraman, Multi-Criteria Decision Making Methods and Fuzzy Sets, in: Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments, Springer Science & Business Media, New York, 2008, pp. 1–18.
  26. J.M. Mendel, Fuzzy logic systems for engineering: a tutorial, Proc. IEEE, 83 (1995) 345–377.
  27. S. Sivanandam, S. Sumathi, S. Deepa, Introduction to Fuzzy Logic Using MATLAB, Springer, Berlin, 2007.
  28. T. Kohonen, The self-organizing map, Proc. IEEE, 78 (1990) 1464–1480.
  29. C.C. Aggarwal, Neural Networks and Deep Learning, Springer, Berlin, 2018.
  30. M.T. Hagan, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networks, 5 (1994) 989–993.
  31. M. Keçer, T.Y. Duman, Effects on the processes in the Göksu Delta, Mersin-Turkey, Bull. Min. Res. Exp., (2007) 17–26.
  32. Z. Demirel, Z. Özer, O. Özer, Nitrogen and phosphate contamination stress of groundwater in an internationally protected area, the Göksu Delta, Turkey, Fresenius Environ. Bull., 19 (2010) 2509–2517.
  33. E.D. Guner, Monitoring of the Quality of the Groundwater Resources in Goksu and Silifke Delta, Turkey, Abstracts of Papers of the American Chemical Society, Amer. Chemical Soc. 1155 16TH ST., NW, Washington, D.C. 20036 USA, 2014.