References
- Turkish Statistical Institute (TUIK), Available at: http://www.tuik.gov.tr/UstMenu.do?metod=temelist 2017 (accessed 17.11.2017).
- Z. Demirel, Integrated hydrogeological and hydrochemical
assessment of the groundwater within the International
Protected Göksu Delta, Southern Turkey, Manas J. Eng. Sci.,
2 (2010) 15–32.
- M. Cobaner, R. Yurtal, A. Dogan, L.H. Motz, Three dimensional
simulation of seawater intrusion in coastal aquifers: a case
study in the Goksu Deltaic Plain, J. Hydrol., 464 (2012) 262–280.
- Z. Demirel, The history and evaluation of saltwater intrusion
into a coastal aquifer in Mersin, Turkey, J. Environ. Manage.,
70 (2004) 275–282.
- Z. Ayas, N.E. Barlas, D. Kolankaya, Determination of organochlorine
pesticide residues in various environments and organisms in
Göksu Delta, Turkey, Aquat. Toxicol., 39 (1997) 171–181.
- G. Seckin, T. Yilmaz, B. Sari, C.B. Ersu, Dissolved nutrient
distributions in groundwater in the Mediterranean coastal
plains - the case of Silifke, Turkey, CLEAN – Soil Air Water,
38 (2010) 1137–1145.
- Z.A. Demirel, Ö. Olcay, Z. Özpinar, Investigation of groundwater
pollution in a protected area in Turkey, the Göksu Delta, Gazi
Univ. J. Sci., 24 (2011) 17–27.
- G. Seckin, T. Yilmaz, B. Sari, C.B. Ersu, Groundwater
hydrochemistry at the Mediterranean coastal plains—the case
of Silifke, Turkey, Desalination, 253 (2010) 164–169.
- R. Barzegar, J. Adamowski, A.A. Moghaddam, Application of
wavelet-artificial intelligence hybrid models for water quality
prediction: a case study in Aji-Chay River, Iran, Stochastic
Environ. Res. Risk Assess., 30 (2016) 1797–1819.
- A. Sheena, M. Ramalingam, B. Anuradha, Groundwater
potential evaluation using fuzzy inference system, Desal. Wat.
Treat., 122 (2018) 268–276.
- A. Jalalkamali, M. Moradi, N. Moradi, Application of several
artificial intelligence models and ARIMAX model for
forecasting drought using the standardized precipitation index,
Int. J. Environ. Sci. Technol., 12 (2015) 1201–1210.
- A.K. Lohani, N.K. Goel, K.K.S. Bhatia, Improving real time
flood forecasting using fuzzy inference system, J. Hydrol., 509
(2014) 25–41.
- E. Tapoglou, G.P. Karatzas, I.C. Trichakis, E.A. Varouchakis,
A spatio-temporal hybrid neural network-Kriging model for
groundwater level simulation, J. Hydrol., 519 (2014) 3193–3203.
- Ch.N. Stefanakos, E. Vanem, Nonstationary fuzzy forecasting of
wind and wave climate in very long-term scales, J. Ocean Eng.
Sci., 3 (2018) 144–155.
- R. Srinivas, P. Bhakar, A.P. Singh, Groundwater quality
assessment in some selected area of Rajasthan, India using
fuzzy multi-criteria decision making tool, Aquat. Procedia,
4 (2015) 1023–1030.
- V. Wagh, D. Panaskar, A. Muley, S. Mukate, S. Gaikwad, Neural
network modelling for nitrate concentration in groundwater of
Kadava River basin, Nashik, Maharashtra, India, Groundwater
Sustainable Dev., 7 (2018) 436–445.
- T. Chanapathi, S. Thatikonda, V.P. Pandey, S. Shrestha, Fuzzy-based
approach for evaluating groundwater sustainability of
Asian cities, Sustainable Cities Soc., 44 (2019) 321–331.
- J.K. Chaudhary, Estimation of groundwater contamination
using fuzzy logic: a case study of Haridwar, India, Groundwater
Sustainable Dev., 8 (2019) 644–653.
- K.-J. Lee, S.-T. Yun, S.Y. Yu, K.-H. Kim, J.-H. Lee, S.-H. Lee,
The combined use of self-organizing map technique and fuzzy
c-means clustering to evaluate urban groundwater quality in
Seoul metropolitan city, South Korea, J. Hydrol., 569 (2019)
685–697.
- S. Azimi, M.A. Moghaddam, S.H. Monfared, Prediction of
annual drinking water quality reduction based on Groundwater
Resource Index using the artificial neural network and fuzzy
clustering, J. Contam. Hydrol. 220 (2019) 6–17.
- C. Güler, M.A. Kurt, M. Alpaslan, C. Akbulut, Assessment of
the impact of anthropogenic activities on the groundwater
hydrology and chemistry in Tarsus coastal plain (Mersin, SE
Turkey) using fuzzy clustering, multivariate statistics and GIS
techniques, J. Hydrol., 414 (2012) 435–451.
- General Directorate for Protection of Natural Assets
Urbanisation, Available at: http://www.csb.gov.tr/gm/tabiat/index.php?Sayfa=sayfa&Tur=webmenu&Id=194, 2017 (accessed
10.11.2017).
- American Public Health Association (APHA), Standard
Methods for the Examination of Water and Wastewater,
Washington, D.C., USA, 2005.
- H.-J. Zimmermann, Fuzzy set theory, Wiley Interdiscip. Rev.
Comput. Stat., 2 (2010) 317–332.
- C. Kahraman, Multi-Criteria Decision Making Methods and
Fuzzy Sets, in: Fuzzy Multi-Criteria Decision Making: Theory
and Applications with Recent Developments, Springer Science
& Business Media, New York, 2008, pp. 1–18.
- J.M. Mendel, Fuzzy logic systems for engineering: a tutorial,
Proc. IEEE, 83 (1995) 345–377.
- S. Sivanandam, S. Sumathi, S. Deepa, Introduction to Fuzzy
Logic Using MATLAB, Springer, Berlin, 2007.
- T. Kohonen, The self-organizing map, Proc. IEEE, 78 (1990)
1464–1480.
- C.C. Aggarwal, Neural Networks and Deep Learning, Springer,
Berlin, 2018.
- M.T. Hagan, M.B. Menhaj, Training feedforward networks
with the Marquardt algorithm, IEEE Trans. Neural Networks,
5 (1994) 989–993.
- M. Keçer, T.Y. Duman, Effects on the processes in the Göksu
Delta, Mersin-Turkey, Bull. Min. Res. Exp., (2007) 17–26.
- Z. Demirel, Z. Özer, O. Özer, Nitrogen and phosphate
contamination stress of groundwater in an internationally
protected area, the Göksu Delta, Turkey, Fresenius Environ.
Bull., 19 (2010) 2509–2517.
- E.D. Guner, Monitoring of the Quality of the Groundwater
Resources in Goksu and Silifke Delta, Turkey, Abstracts of
Papers of the American Chemical Society, Amer. Chemical Soc.
1155 16TH ST., NW, Washington, D.C. 20036 USA, 2014.