References

  1. V. Oskoei, M. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption, J. Mol. Liq., 213 (2016) 374–380.
  2. X. Wang, Z. Wu, Y. Wang, W. Wang, X. Wang, Y. Bu, J. Zhao, Adsorption–photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation, J. Hazard. Mater., 262 (2013) 16–24.
  3. O. Turkay, H. Inan, A. Dimoglo, Experimental and theoretical study on catalytic ozonation of humic acid by ZnO catalyst, Sep. Sci. Technol., 52 (2017) 778–786.
  4. S. Mortazavi, G. Asgari, S. Hashemian, G. Moussavi, Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal, React. Kinet. Mech. Cat., 100 (2010) 471–485.
  5. G. Asgari, A.S. Mohammadi, S.B. Mortazavi, B. Ramavandi, Investigation on the pyrolysis of cow bone as a catalyst for ozone aqueous decomposition: kinetic approach, J. Anal. Appl. Pyrol.. 99 (2013) 149–154.
  6. J.T. Jung, W.H. Lee, J.O. Kim, Photodegradation and permeability of conventional photocatalytic reactor and two different submerged membrane photocatalytic reactors for the removal of humic acid in water, Desal. Wat. Treat., 57 (2016) 26765–26772.
  7. M.A. Mohd Yusof, M.N. Abu Seman, N. Hilal, Development of polyamide forward osmosis membrane for humic acid removal, Desal. Wat. Treat., 57 (2016) 29113–29117.
  8. B. Seredyńska-Sobecka, M. Tomaszewska, A.W. Morawski, Removal of humic acids by the ozonation–biofiltration process, Desalination, 198 (2006) 265–273.
  9. P. Jin, J. Song, L. Yang, X. Jin, X.C. Wang, Selective binding behavior of humic acid removal by aluminum coagulation, Environ. Pollut., 233 (2018) 290–298.
  10. J.N. Wang, A.M. Li, Y. Zhou, L. Xu, Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity, Chin. Chem. Lett., 20 (2009) 1478–1482.
  11. C. An, S. Yang, G. Huang, S. Zhao, P. Zhang, Y. Yao, Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: equilibrium and kinetic adsorption studies, Fuel, 165 (2016) 264–271.
  12. G.G. Bessegato, J.C. Cardoso, B.F. Da Silva, M.V.B. Zanoni, Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization, Appl. Catal., B, 180 (2016) 161–168.
  13. G. Moussavi, A. Alahabadi, K. Yaghmaeian, Investigating the potential of carbon activated with NH4Cl for catalyzing the degradation and mineralization of antibiotics in ozonation process, Chem. Eng. Res. Des., 97 (2015) 91–99.
  14. Y. Zeng, X. Lin, F. Li, P. Chen, Q. Kong, G. Liu, W. Lv, Ozonation of ketoprofen with nitrate in aquatic environments: kinetics, pathways, and toxicity, RSC Adv., 8 (2018) 10541–10548.
  15. C.-H. Wu, C.-Y. Kuo, C.-L. Chang, Homogeneous catalytic ozonation of CI Reactive Red 2 by metallic ions in a bubble column reactor, J. Hazard. Mater., 154 (2008) 748–755.
  16. J.-E. Lee, B.-S. Jin, S.-H. Cho, S.-H. Han, O.-S. Joo, K.-D. Jung, Catalytic ozonation of humic acids with Fe/MgO, Korean J. Chem. Eng., 22 (2005) 536–540.
  17. J. Chen, S. Tian, J. Lu, Y. Xiong, Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol, Appl. Catal., A, 506 (2015) 118–125.
  18. A. Mashayekh-Salehi, G. Moussavi, K. Yaghmaeian, Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant, Chem. Eng. J., 310 (2017) 157–169.
  19. G. Moussavi, R. Khosravi, N.R. Omran, Development of an efficient catalyst from magnetite ore: characterization and catalytic potential in the ozonation of water toxic contaminants, Appl. Catal., A, 445 (2012) 42–49.
  20. G. Moussavi, R. Alizadeh, The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater, Appl. Catal., B, 97 (2010) 160–167.
  21. G. Moussavi, A. Yazdanbakhsh, M. Heidarizad, The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment, J. Hazard. Mater., 171 (2009) 907–913.
  22. G. Asgari, M. Salari, Optimized synthesis of carbon-doped nano-MgO and its performance study in catalyzed ozonation of humic acid in aqueous solutions: Modeling based on response surface methodology, J. Environ. Manage., 239 (2019) 198–210.
  23. G. Moussavi, A. Mashayekh-Salehi, K. Yaghmaeian, A. Mohseni- Bandpei, The catalytic destruction of antibiotic tetracycline by sulfur-doped manganese oxide (S–MgO) nanoparticles, J. Environ. Manage., 210 (2018) 131–138.
  24. P. Wang, P.S. Yap, T.T. Lim, C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Catal., A, 399 (2011) 252–261.
  25. X. Wu, S. Yin, Q. Dong, C. Guo, H. Li, T. Kimura, T. Sato, Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method, Appl. Catal., B, 142–143 (2013) 450–457.
  26. F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C, 115 (2011) 13285–13292.
  27. D. Tristantini, E. Kusrini, D. Philo, Simple methods for immobilizing titania into pumice for photodegradation of phenol waste, Int. J. Ind. Chem., 9 (2018) 127–139.
  28. Y. Wang, Y. Xie, H. Sun, J. Xiao, H. Cao, S. Wang, Efficient catalytic ozonation over reduced graphene oxide for p-hydroxylbenzoic acid (PHBA) destruction: active site and mechanism, ACS Appl. Mater. Interfaces, 8 (2016) 9710–9720.
  29. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Alizadeh, M. Bagherzadeh, Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes, J. Colloid Interface Sci., 466 (2016) 360–368.
  30. X. Feng, Y. Fan, N. Nomura, K. Kikuchi, L. Wang, W. Jiang, A. Kawasaki, Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties, Carbon, 112 (2017) 169–176.
  31. M. Salari, M.H. Dehghani, A. Azari, M.D. Motevalli, A. Shabanloo, I. Ali, High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm, J. Mol. Liq., 285 (2019) 146–157.
  32. B.Y.Z. Hiew, L.Y. Lee, K.C. Lai, S. Gan, S. Thangalazhy-Gopakumar, G.-T. Pan, T.C.-K. Yang, Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies, J. Environ. Res., 168 (2019) 241–253.
  33. Y. Xie, M. Sun, Y. Shen, H. Li, G. Lv, Z. Cai, C. Yang, G.A.A. Ali, F. Wang, X. Zhang, Preparation of rGO–mesoporous silica nanosheets as Pickering interfacial catalysts, RSC Adv., 6 (2016) 101808–101817.
  34. U. Farooq, M. Danish, S. Lu, M. Naqvi, X. Gu, X. Fu, X. Zhang, M. Nasir, Synthesis of nZVI@ reduced graphene oxide: an efficient catalyst for degradation of 1, 1, 1-trichloroethane (TCA) in percarbonate system, Res. Chem. Intermed., 43 (2017) 3219–3236.
  35. Y. Hu, S. Song, A. Lopez-Valdivieso, Effects of oxidation on the defect of reduced graphene oxides in graphene preparation, J. Colloid Interface Sci., 450 (2015) 68–73.
  36. M. Heidarizad, S.S. Şengör, Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue, J. Mol. Liq., 224 (2016) 607–617.
  37. A. Azari, M. Salari, M.H. Dehghani, M. Alimohammadi, H. Ghaffari, K. Sharafi, N. Shariatifar, M. Baziar, Efficiency of magnitized graphene oxide nanoparticles in removal of 2, 4-dichlorophenol from aqueous solution, J. Mazandaran Univ. Med. Sci., 26 (2017) 265–281.
  38. K. Zhou, L. Li, X. Ma, Y. Mo, R. Chen, H. Li, Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone, RSC Adv., 8 (2018) 2922–2932.
  39. G. Liu, L. Wang, B. Wang, T. Gao, D. Wang, A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors, RSC Adv., 5 (2015) 63553–63560.
  40. G. Moussavi, A.A. Aghapour, K. Yaghmaeian, The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor, Chem. Eng. J., 249 (2014) 302–310.
  41. S.K. Abdel-Aal, A. Ionov, R. Mozhchil, A.H. Naqvi, Simple synthesis of graphene nanocomposites MgO–rGO and Fe2O3–rGO for multifunctional applications, Appl. Phys. A. 124 (2018) 365.
  42. N. Hidayah, W.-W. Liu, C.-W. Lai, N. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, Eds., Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization, AIP Conference Proceedings, 2017, AIP Publishing.
  43. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3 (2008) 101.
  44. Q. Zhou, J.-W. Yang, Y.-Z. Wang, Y.-H. Wu, D.-Z. Wang, Preparation of nano-MgO/Carbon composites from sucroseassisted synthesis for highly efficient dehydrochlorination process, Mater. Lett., 62 (2008) 1887–1889.
  45. Y.H. Qin, Y. Zhuang, R.L. Lv, T.L. Wang, W.G. Wang, C.W. Wang, Pd nanoparticles anchored on carbon-doped TiO2 nanocoating support for ethanol electrooxidation in alkaline media, Electrochim. Acta, 154 (2015) 77–82.
  46. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal., B, 46 (2003) 639–669.
  47. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B, 99 (2010) 27–42.
  48. M.J. Ndolomingo, R. Meijboom, Kinetics of the catalytic oxidation of morin on γ-Al2O3 supported gold nanoparticles and determination of gold nanoparticles surface area and sizes by quantitative ligand adsorption, Appl. Catal., B, 199 (2016) 142–154.
  49. M. Moradi, F. Ghanbari, M. Manshouri, K.A. Angali, Photocatalytic degradation of azo dye using nano-ZrO2/UV/persulfate: response surface modeling and optimization, Korean J. Chem. Eng., 33 (2016) 539–546.