References
- T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation
of dyes in textile effluent: a critical review on current treatment
technologies with a proposed alternative, Bioresour. Technol.,
77 (2001) 247–255.
- G. Crini, Non-conventional low-cost adsorbents for dye removal: a
review, Bioresour. Technol., 97 (2006) 1061–1085.
- M. Berrios, M.Á. Martín, A. Martín, Treatment of pollutants
in wastewater: adsorption of methylene blue onto olive-based
activated carbon, J. Ind. Eng. Chem., 18 (2012) 780–784.
- J.L. Faria, W. Wang, Carbon Materials in Photocatalysis, P. Serp,
J.L. Figueiredo, Ed., Carbon Materials for Catalysis, John Wiley
& Sons, Hoboken, NJ, 2009, pp. 481–506.
- W.H. Glaze, Drinking-water treatment with ozone, Environ. Sci.
Technol., 21 (1987) 224–230.
- W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water
treatment processes involving ozone, hydrogen peroxide and
ultraviolet radiation, Ozone Sci. Eng., 9 (1987) 335–352.
- Y. Deng, R.Z. Zhao, Advanced oxidation processes (AOPs) in
wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
- R.S. Ribeiro, N.A. Fathy, A.A. Attia, A.M.T. Silva, J.L. Faria,
H.T. Gomes, Activated carbon xerogels for the removal of the
anionic azo dyes Orange II and Chromotrope 2R by adsorption
and catalytic wet peroxide oxidation, Chem. Eng. J., 195–196
(2012) 112–121.
- N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, W.S. Mohamed,
Oxidative degradation of RB19 dye by a novel γ–MnO2/MWCNT nanocomposite catalyst with H2O2, J. Environ. Chem.
Eng., 1 (2013) 858–864.
- M.T. Pinho, A. Silva, N.A. Fathy, A.A. Attia, H.T. Gomes,
J.L. Faria, Activated carbon xerogel-chitosan composite materials
for catalytic wet peroxide oxidation under intensified
process conditions, J. Environ. Chem. Eng., 3 (2015) 1243–1251.
- N.A. Fathy, S.M. El-Khouly, N.A. Hassan, Free- and Ni-doped
carbon xerogels catalysts for wet peroxide oxidation of methyl
orange, J. Water Process Eng., 16 (2017) 21–27.
- N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, Synthesis of a novel
MnO2@carbon nanotubes-graphene hybrid catalyst (MnO2@CNT-G) for catalytic oxidation of basic red 18 dye (BR18),
J. Water Process Eng., 17 (2017) 95–101.
- S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect
of nanosized CeO2 or ZnO loading on adsorption and catalytic
properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017)
774–788.
- S.M. El-Khouly, N.A. Fathy, Multiwalled-carbon nanotubes
supported amorphous Fe2O3 and Ag2O-Fe2O3 as Fenton
catalysts for degradation of maxilon red dye, Asia-Pac. J. Chem.
Eng., 13 (2018) e2184, https://doi.org/10.1002/apj.2184.
- W.E. Rashwan, N.A. Fathy, S.M. Elkhouly, A novel catalyst
of ceria-nanorods loaded on carbon xerogel for catalytic wet
oxidation of methyl green dye, J. Taiwan Inst. Chem. Eng.,
88 (2018) 234–242.
- N.A. Fathy, M.A. Shouman, R.M.M. Aboelenin, Nitrogen and
phosphorous-doped porous carbon xerogels as metal-free
catalysts for environmental catalytic peroxide oxidation of
4-nitrophenol, Asia-Pac. J. Chem. Eng., 11 (2016) 836–845.
- J. Lao, J. Huang, D. Wang, Z.F. Ren, Self-assembled In2O3
nanocrystal chains and nanowire networks, Adv. Mater.,
16 (2004) 65–69.
- H. Zhu, N. Wang, L. Wang, K. Yao, X. Shen, In situ X-ray
diffraction study of the phase transition of nanocrystalline
In(OH)3 to In2O3, Inorg. Mater., 41 (2005) 609–612.
- S. Kar, S. Chakrabarti, S. Chaudhuri, Morphology dependent
field emission from In2O3 nanostructures, Nanotechnology,
17 (2006) 3058–3062.
- X. Chen, Z. Zhang, X. Zhang, J. Liu, Y. Qian, Single-source
approach to the synthesis of In2S3 and In2O3 crystallites and
their optical properties, Chem. Phys. Lett., 407 (2005) 482–486.
- M. Ivanovskaya, A. Gurlo, P. Bogdanov, Mechanism of O3 and
NO2 detection and selectivity of In2O3 sensors, Sens. Actuators,
B, 77 (2001) 264–267.
- D.V. Shinde, D.Y. Ahn, V.V. Jadhav, D.Y. Lee, N.K. Shrestha,
J.K. Lee, H.Y. Lee, R.S. Mane, S.-H. Han, A coordination
chemistry approach for shape controlled synthesis of indium
oxide nanostructures and their photoelectrochemical properties,
J. Mater. Chem. A, 2 (2014) 5490–5498
- Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian,
Size-controllable growth of single crystal In(OH)3 and In2O3
nanocubes, Cryst. Growth Des., 5 (2005) 147–150.
- Y. Zhao, A.Z. Wu, H. Dang, Synthesis and characterization of
single-crystalline In2O3 nanocrystals via solution dispersion,
Langmuir, 6 (2004) 27–29.
- R. Sharma, R.S. Mane, S.K. Min, S.H. Han, Optimization of
growth of In2O3 nano-spheres thin films by electrodeposition
for dye-sensitized solar cells, J. Alloys Compd., 479 (2009)
840–843.
- Z. Li, P. Zhang, T. Shao, J. Wang, L. Jin, X. Li, Different
nanostructured In2O3 for photocatalytic decomposition of
perfluorooctanoic acid (PFOA), J. Hazard. Mater., 260 (2013)
40–46.
- L. Zhang, F.B. Gu, Z.H. Wang, D.M. Han, G.S. Guo, Preparation
of In2O3/MWCNTs nanocomposites and their gas-sensing
property to ethanol, Key Eng. Mater., 562 (2013) 543–548.
- Z. Li, P. Zhang, J. Li, T. Shao, L. Jin, Synthesis of In2O3-graphene composites and their photocatalytic performance
towards perfluorooctanoic acid decomposition, J. Photochem.
Photobiol., A, 271 (2013) 111–116.
- L. Zhao, W. Yue, Y. Ren, Synthesis of graphene-encapsulated
mesoporous In2O3 with different particle size for highperformance
lithium storage, Electrochim. Acta, 116 (2014)
31–38.
- S. Qin, D. Liu, W. Lei, Y. Chen, Synthesis of an indium oxide
nanoparticles embedded graphene three-dimensional architecture
for enhanced lithium-ion storage, J. Mater. Chem. A,
3 (2015)18238–18243
- J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu,
Flower-like In2O3 modified by reduced graphene oxide sheets
serving as a highly sensitive gas sensor for trace NO2 detection,
J. Colloid Interface Sci., 504 (2017) 206–213
- L.-Y. Chen, W.-D. Zhang, In2O3/g-C3N4 composite photocatalysts
with enhanced visible light driven activity, Appl. Surf. Sci.,
301 (2014) 428–435.
- H. Zhao, H. Yin, X.-X. Yu, W. Zhang, C. Li, M.-Q. Zhu, In2O3
nanoparticles/carbon fiber hybrid mat as free-standing anode
for lithium-ion batteries with enhanced electrochemical performance,
J. Alloys Compd., 735 (2018) 319–326.
- K. Guo, H. Song, X. Chen, X. Du, L. Zhong, Graphene oxide as an
anti-shrinkage additive for resorcinol–formaldehyde composite
aerogels, Phys. Chem. Chem. Phys., 16 (2014) 11603–11608.
- M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H.
Satcher Jr., T.F. Baumann, Synthesis of graphene aerogel with
high electrical conductivity, J. Am. Chem. Soc., 132 (2010)
14067–14069.
- F. Meng, X. Zhang, B. Xu, S. Yue, H. Guo, Y. Luo, Alkalitreated
graphene oxide as a solid base catalyst: synthesis and
electrochemical capacitance of graphene/carbon composite
aerogels, J. Mater. Chem., 21 (2011) 18537–18539.
- Q. Lei, H. Song, X. Chen, M. Li, A. Li, B. Tang, D. Zhou, Effects
of graphene oxide addition on the synthesis and supercapacitor
performance of carbon aerogel particles, RSC Adv., 6 (2016)
40683–40690.
- R.W. Pekala, Organic aerogels from the polycondensation
of resorcinol with formaldehyde, J. Mater. Sci., 24 (1989)
3221–3227.
- B.S. Girgis, A.A. Attia, N.A. Fathy, Potential of nano-carbon
xerogels in the remediation of dye-contaminated water
discharges, Desalination, 265 (2011) 169–176.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- K.P. Annamalai, L. Liu, Y. Tao, Highly nanoporous nickel
cobaltite hexagonal nanostructure-graphene composites for the
next generation energy storage/conversion devices, Adv. Mater.
Interfaces, 4 (2017), doi.org/10.1002/admi.201700219.
- H.K. Farag, M.A. Marzouk, Preparation and characterization
of nanostructured nickel oxide and its influence on the optical
properties of sodium zinc borate glasses, J. Mater. Sci. - Mater.
Electron., 28 (2017) 15480–15487.
- H.K. Farag, A.M. El Shamy, E.M. Sherif, S.Z. El Abedin,
Sonochemical synthesis of nanostructured ZnO/Ag composites
in an ionic liquid, Z. Phys. Chem., 203 (2016) 1733–1744.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- M.I. Temkin, V. Pyzhev, Kinetic of ammonia synthesis on
promoted iron catalyst, Acta Phys. Chim. Sin. URSS, 12 (1940)
327–356.
- N.A. Fathy, R.R. Abd El-Latif, R.M.M. Aboelenin, L.B. Khalil,
Green reduction of oxidized graphite to reduced graphene
oxide using Zygophyllum album L.f.: comparative adsorption
studies on p-nitrophenol, Recent Innovations Chem. Eng.,
8 (2015) 87–102.
- P. Bautista, A.F. Mohedano, N. Menendez, J.A. Casas,
J.J. Rodriguez, Catalytic wet peroxide oxidation of cosmetic
wastewaters with Fe-bearing catalysts, Catal. Today, 151 (2010)
148–152.
- M. Arshadi, A.R. Faraji, M.J. Amiri, Synthesis and adsorption
characteristics of an heterogenized manganese nanoadsorbent
towards methyl orange, J. Colloid Interface Sci., 440 (2015)
189–197.
- J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous
photo-Fenton oxidation with pillared clay-based catalysts for
wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
- S. Zhang, D. Wang, L. Zhou, X. Zhang, P. Fan, X. Quan,
Intensified internal electrolysis for degradation of methylene
blue as model compound induced by a novel hybrid material:
multi-walled carbon nanotubes immobilized on zero-valent
iron plates (Fe0-CNTs), Chem. Eng. J., 217 (2013) 99–107.
- M. Arshadia, M.K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, A. Gil, Degradation of methyl
orange by heterogeneous Fenton-like oxidation on a nanoorganometallic
compound in the presence of multi-walled
carbon nanotubes, Chem. Eng. Res. Des., 112 (2016) 113–121.