References

  1. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  2. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  3. M. Berrios, M.Á. Martín, A. Martín, Treatment of pollutants in wastewater: adsorption of methylene blue onto olive-based activated carbon, J. Ind. Eng. Chem., 18 (2012) 780–784.
  4. J.L. Faria, W. Wang, Carbon Materials in Photocatalysis, P. Serp, J.L. Figueiredo, Ed., Carbon Materials for Catalysis, John Wiley & Sons, Hoboken, NJ, 2009, pp. 481–506.
  5. W.H. Glaze, Drinking-water treatment with ozone, Environ. Sci. Technol., 21 (1987) 224–230.
  6. W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng., 9 (1987) 335–352.
  7. Y. Deng, R.Z. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  8. R.S. Ribeiro, N.A. Fathy, A.A. Attia, A.M.T. Silva, J.L. Faria, H.T. Gomes, Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation, Chem. Eng. J., 195–196 (2012) 112–121.
  9. N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, W.S. Mohamed, Oxidative degradation of RB19 dye by a novel γ–MnO2/MWCNT nanocomposite catalyst with H2O2, J. Environ. Chem. Eng., 1 (2013) 858–864.
  10. M.T. Pinho, A. Silva, N.A. Fathy, A.A. Attia, H.T. Gomes, J.L. Faria, Activated carbon xerogel-chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions, J. Environ. Chem. Eng., 3 (2015) 1243–1251.
  11. N.A. Fathy, S.M. El-Khouly, N.A. Hassan, Free- and Ni-doped carbon xerogels catalysts for wet peroxide oxidation of methyl orange, J. Water Process Eng., 16 (2017) 21–27.
  12. N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, Synthesis of a novel MnO2@carbon nanotubes-graphene hybrid catalyst (MnO2@CNT-G) for catalytic oxidation of basic red 18 dye (BR18), J. Water Process Eng., 17 (2017) 95–101.
  13. S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017) 774–788.
  14. S.M. El-Khouly, N.A. Fathy, Multiwalled-carbon nanotubes supported amorphous Fe2O3 and Ag2O-Fe2O3 as Fenton catalysts for degradation of maxilon red dye, Asia-Pac. J. Chem. Eng., 13 (2018) e2184, https://doi.org/10.1002/apj.2184.
  15. W.E. Rashwan, N.A. Fathy, S.M. Elkhouly, A novel catalyst of ceria-nanorods loaded on carbon xerogel for catalytic wet oxidation of methyl green dye, J. Taiwan Inst. Chem. Eng., 88 (2018) 234–242.
  16. N.A. Fathy, M.A. Shouman, R.M.M. Aboelenin, Nitrogen and phosphorous-doped porous carbon xerogels as metal-free catalysts for environmental catalytic peroxide oxidation of 4-nitrophenol, Asia-Pac. J. Chem. Eng., 11 (2016) 836–845.
  17. J. Lao, J. Huang, D. Wang, Z.F. Ren, Self-assembled In2O3 nanocrystal chains and nanowire networks, Adv. Mater., 16 (2004) 65–69.
  18. H. Zhu, N. Wang, L. Wang, K. Yao, X. Shen, In situ X-ray diffraction study of the phase transition of nanocrystalline In(OH)3 to In2O3, Inorg. Mater., 41 (2005) 609–612.
  19. S. Kar, S. Chakrabarti, S. Chaudhuri, Morphology dependent field emission from In2O3 nanostructures, Nanotechnology, 17 (2006) 3058–3062.
  20. X. Chen, Z. Zhang, X. Zhang, J. Liu, Y. Qian, Single-source approach to the synthesis of In2S3 and In2O3 crystallites and their optical properties, Chem. Phys. Lett., 407 (2005) 482–486.
  21. M. Ivanovskaya, A. Gurlo, P. Bogdanov, Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors, Sens. Actuators, B, 77 (2001) 264–267.
  22. D.V. Shinde, D.Y. Ahn, V.V. Jadhav, D.Y. Lee, N.K. Shrestha, J.K. Lee, H.Y. Lee, R.S. Mane, S.-H. Han, A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties, J. Mater. Chem. A, 2 (2014) 5490–5498
  23. Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes, Cryst. Growth Des., 5 (2005) 147–150.
  24. Y. Zhao, A.Z. Wu, H. Dang, Synthesis and characterization of single-crystalline In2O3 nanocrystals via solution dispersion, Langmuir, 6 (2004) 27–29.
  25. R. Sharma, R.S. Mane, S.K. Min, S.H. Han, Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells, J. Alloys Compd., 479 (2009) 840–843.
  26. Z. Li, P. Zhang, T. Shao, J. Wang, L. Jin, X. Li, Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA), J. Hazard. Mater., 260 (2013) 40–46.
  27. L. Zhang, F.B. Gu, Z.H. Wang, D.M. Han, G.S. Guo, Preparation of In2O3/MWCNTs nanocomposites and their gas-sensing property to ethanol, Key Eng. Mater., 562 (2013) 543–548.
  28. Z. Li, P. Zhang, J. Li, T. Shao, L. Jin, Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition, J. Photochem. Photobiol., A, 271 (2013) 111–116.
  29. L. Zhao, W. Yue, Y. Ren, Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for highperformance lithium storage, Electrochim. Acta, 116 (2014) 31–38.
  30. S. Qin, D. Liu, W. Lei, Y. Chen, Synthesis of an indium oxide nanoparticles embedded graphene three-dimensional architecture for enhanced lithium-ion storage, J. Mater. Chem. A, 3 (2015)18238–18243
  31. J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection, J. Colloid Interface Sci., 504 (2017) 206–213
  32. L.-Y. Chen, W.-D. Zhang, In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity, Appl. Surf. Sci., 301 (2014) 428–435.
  33. H. Zhao, H. Yin, X.-X. Yu, W. Zhang, C. Li, M.-Q. Zhu, In2O3 nanoparticles/carbon fiber hybrid mat as free-standing anode for lithium-ion batteries with enhanced electrochemical performance, J. Alloys Compd., 735 (2018) 319–326.
  34. K. Guo, H. Song, X. Chen, X. Du, L. Zhong, Graphene oxide as an anti-shrinkage additive for resorcinol–formaldehyde composite aerogels, Phys. Chem. Chem. Phys., 16 (2014) 11603–11608.
  35. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr., T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132 (2010) 14067–14069.
  36. F. Meng, X. Zhang, B. Xu, S. Yue, H. Guo, Y. Luo, Alkalitreated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels, J. Mater. Chem., 21 (2011) 18537–18539.
  37. Q. Lei, H. Song, X. Chen, M. Li, A. Li, B. Tang, D. Zhou, Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles, RSC Adv., 6 (2016) 40683–40690.
  38. R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci., 24 (1989) 3221–3227.
  39. B.S. Girgis, A.A. Attia, N.A. Fathy, Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges, Desalination, 265 (2011) 169–176.
  40. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  41. K.P. Annamalai, L. Liu, Y. Tao, Highly nanoporous nickel cobaltite hexagonal nanostructure-graphene composites for the next generation energy storage/conversion devices, Adv. Mater. Interfaces, 4 (2017), doi.org/10.1002/admi.201700219.
  42. H.K. Farag, M.A. Marzouk, Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses, J. Mater. Sci. - Mater. Electron., 28 (2017) 15480–15487.
  43. H.K. Farag, A.M. El Shamy, E.M. Sherif, S.Z. El Abedin, Sonochemical synthesis of nanostructured ZnO/Ag composites in an ionic liquid, Z. Phys. Chem., 203 (2016) 1733–1744.
  44. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  45. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  46. M.I. Temkin, V. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalyst, Acta Phys. Chim. Sin. URSS, 12 (1940) 327–356.
  47. N.A. Fathy, R.R. Abd El-Latif, R.M.M. Aboelenin, L.B. Khalil, Green reduction of oxidized graphite to reduced graphene oxide using Zygophyllum album L.f.: comparative adsorption studies on p-nitrophenol, Recent Innovations Chem. Eng., 8 (2015) 87–102.
  48. P. Bautista, A.F. Mohedano, N. Menendez, J.A. Casas, J.J. Rodriguez, Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts, Catal. Today, 151 (2010) 148–152.
  49. M. Arshadi, A.R. Faraji, M.J. Amiri, Synthesis and adsorption characteristics of an heterogenized manganese nanoadsorbent towards methyl orange, J. Colloid Interface Sci., 440 (2015) 189–197.
  50. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
  51. S. Zhang, D. Wang, L. Zhou, X. Zhang, P. Fan, X. Quan, Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material: multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs), Chem. Eng. J., 217 (2013) 99–107.
  52. M. Arshadia, M.K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, A. Gil, Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nanoorganometallic compound in the presence of multi-walled carbon nanotubes, Chem. Eng. Res. Des., 112 (2016) 113–121.