References

  1. M. Ulbricht, Advanced functional polymer membranes, Polymer, 47 (2016) 2217–2262.
  2. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, John Wiley and Sons, Hoboken, New Jersey, 2012.
  3. X. Zheng, M. Yu, H. Liang, L. Qi, H. Zheng, H. Exler, W. Schier, F.-B. Frechen, Membrane technology for municipal drinking water plants in China: progress and prospect, Desal. Wat. Treat., 49 (2012) 281–295.
  4. M. Erkanlı, L. Yilmaz, P.Z. Çulfaz-Emecen, U. Yetis, Brackish water recovery from reactive dyeing wastewater via ultrafiltration, J. Cleaner Prod., 165 (2017) 1204–1214.
  5. A. Erbasi, A. Can, K. Cinar, The use of the AHP method in the selection of the most appropriate production materials by businesses: a sample study on tractor body materials, J. Adv. Manage. Sci., 1 (2013) 152–155.
  6. C. Alavala, Fuzzy Logic and Neural Networks, New Age International, India, 2014.
  7. D. Dalalah, M. Hayajneh, F. Batieha, A fuzzy multi-criteria descision making model for supplier selection, Expert Syst. Appl., 38 (2011) 8384–8391.
  8. D.-Y. Chang, Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res., 95 (1996) 649–655.
  9. Z. Srdjevic, M. Samardzic, B. Srdjevic, Robustness of AHP in selecting wastewater treatment method for the coloured metal industry: Serbian case study, Civ. Eng. Environ. Syst., 29 (2012) 147–161.
  10. R.R. Tan, K.B. Aviso, A.P. Huelgas, M.A.B. Promentilla, Fuzzy AHP approach to selection problems in process engineering involving quanitative and qualitative aspects, Process Saf. Environ. Prot., 92 (2014) 467–475.
  11. J.Z. Ren, A. Fedele, M. Mason, A. Manzardo, A. Scipioni, Fuzzy multi-actor multi-criteria decision making for sustainability assessment of biomass-based technologies for hydrogen production, Int. J. Hydrogen Energy, 38 (2013) 9111–9120.
  12. S.M.K. Sadr, D.P. Saroj, S. Kouchaki, A.A. Ilemobade, S.K. Ouki, A group decision-making tool for the application of membrane technologies in different water reuse scenarios, J. Environ. Manage., 156 (2015) 97–108.
  13. G. Büyüközkan, C. Kahraman, D. Ruan, A fuzzy multi-criteria decision approach for software development strategy selection, Int. J. Gen. Syst., 33 (2004) 259–280.
  14. O. Kilincci, S.A. Onal, Fuzzy AHP approach for supplier selection in a washing machine company, Expert Syst. Appl., 38 (2011) 9656–9664.
  15. L. Anojkumar, M. Ilangkumaran, V. Sasirekha, Comparative analysis of MCDM methods for pipe material selection in sugar industry, Expert Syst. Appl., 41 (2014) 2964–2980.
  16. P. Manekar, T. Nandy, A. Sargaonkar, B. Rathi, M. Karthik, FAHP ranking and selection of pretreatment module for membrane separation processes in textile cluster, Bioresour. Technol., 102 (2011) 558–566.
  17. G. Büyüközkan, O. Feyzioglu, A fuzzy-logic-based decisionmaking approach for new product development, Int. J. Prod. Econ., 90 (2004) 27–45.
  18. T. Saaty, The Analytical Hierarchy Process, McGraw-Hill, New York, 1980.
  19. E. Bulut, O. Duru, T. Keçeci, S. Yoshida, Use of consistency index, expert prioritization and direct numerical inputs for generic fuzzy-AHP modeling: a process model for shipping asset management, Expert Syst. Appl., 39 (2012) 1911–1923.
  20. W. van Leekwijck, E.E. Kerre, Defuzzification: criteria and classification, Fuzzy Sets Syst., 108 (1999) 159–178.
  21. C.-W. Chang, C.-R. Wu, H.-L. Lin, Applying fuzzy hierarchy multiple attributes to construct an expert decision making process, Expert Syst. Appl., 36 (2009) 7363–7368.
  22. J.-F. Chen, H.-N. Hsieh, Q.H. Do, Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach, Appl. Soft Comput., 28 (2015) 100–108.
  23. T.L. Saaty, Decision-making with the AHP: why is the principal eigenvector necessary, J. Oper. Res., 145 (2003) 85–91.