References
- I. Azni, S. Katayon, Degradation of phenol in wastewater using
anolyte produced from electrochemical generation of brine
solution, Global NEST Int. J., 4 (2002) 139–144.
- W. Hu, Y. Gao, Treatment of phenolic wastewater by
incineration, Ind. Water Waste, 31 (2000) 28–29.
- P. Barták, P. Frnková, L. Čáp, Determination of phenols using
simultaneous steam distillation–extraction, J. Chromatogr.,
A, 867 (2000) 281–287.
- M.T.A. Reis, O.M.F. Freitas, S. Agarwal, L.M. Ferreira, M.R.C.
Ismael, R. Machado, J.M.R. Carvalho, Removal of phenols from
aqueous solutions by emulsion liquid membranes, J. Hazard.
Mater., 192 (2011) 986–994.
- C. Zidi, R. Tayeb, M. Dhahbi, Extraction of phenol from aqueous
solutions by means of supported liquid membrane (MLS)
containing tri–noctyl phosphine oxide (TOPO), J. Hazard.
Mater., 194 (2011) 62–68.
- R.R.N. Marques, F. Stüber, K.M. Smith, A. Fabregat, C. Bengoa,
J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham,
Sewage sludge based catalysts for catalytic wet air oxidation of
phenol: preparation, characterisation and catalytic performance,
Appl. Catal., B, 101 (2011) 306–316.
- S. Lefèvre, O. Boutin, J.–H. Ferrasse, L. Malleret, R. Faucherand,
A. Viand, Thermodynamic and kinetic study of phenol
degradation by a non–catalytic wet air oxidation process,
Chemosphere, 84 (2011) 1208–1215.
- X. Zhu, J.R. Ni, J. Wei, X. Xing, H. Li, Y. Jiang, Scale–up of BDD
anode system for electrochemical oxidation of phenol simulated
wastewater in continuous mode, J. Hazard. Mater., 184 (2010)
493–498.
- P. Jiang, J. Zhou, A. Zhang, Y. Zhong, Electrochemical
degradation of p–nitrophenol with different processes,
J. Environ. Sci., 22 (2010) 500–506.
- S. Raghu, C.A. Basha, Chemical or electrochemical techniques,
followed by ion exchange, for recycle of textile dye wastewater,
J. Hazard. Mater., 149 (2007) 324–330.
- N.D. Berge, K.S. Ro, J. Mao, J.R.V. Flora, M.A. Chappell, S. Bae,
Hydrothermal carbonization of municipal waste streams,
Environ. Sci. Technol., 45 (2011) 5696–5703.
- M.M. Titirici, A. Thomas, S. Yu, J.O. Muller, M. Antonietti,
A direct synthesis of mesoporous carbons with bicontinuous
pore morphology from crude plant material by hydrothermal
carbonization, Chem. Mater., 19 (2007) 4205–4212.
- Z. Wu, C. Li, H. Liang, J. Chen, S. Yu, Ultralight, flexible, and
fire–resistant carbon nanofiber aerogels from bacterial cellulose,
Angew. Chem., Int. Ed., 52 (2013) 2925–2929.
- B. Hu, S. Yu, K. Wang, L. Liu, X Xu, Functional carbonaceous
materials from hydrothermal carbonization of biomass:
an effective chemical process, Dalton Trans., 40 (2008)
5414–5423.
- M.M. Titirici, R.J. White, C. Falco, M. Sevilla, Black perspectives
for a green future: hydrothermal carbons for environment
protection and energy storage, Energy Environ. Sci., 5 (2012)
6796–6822.
- T.P. Fellinger, R.J. White, M.M. Titirici, M. Antonietti, Borax–
mediated formation of carbon aerogels from glucose, Adv.
Funct. Mater., 22 (2012) 3254–3260.
- C. Falco, N. Baccile, M.M. Titirici, Morphological and structural
differences between glucose, cellulose and lignocellulosic
biomass derived hydrothermal carbons, Green Chem., 13 (2011)
3273–3281.
- J. Poerschmann, B. Weiner, H. Wedwitschka, A. Zehnsdorf,
R. Koehler, F.D. Kopinke, Characterization of biochars and
dissolved organic matter phases obtained upon hydrothermal
carbonization of Elodea nuttallii, Bioresour. Technol., 189 (2015)
145–153.
- J. Poerschmann, B. Weiner, I. Baskyr, Organic compounds
in olive mill wastewater and in solutions resulting from
hydrothermal carbonization of the wastewater, Chemosphere,
92 (2013) 1472–1482.
- J. Poerschmann, I. Baskyr, B. Weiner, R. Koehler,
H. Wedwitschka, F.D. Kopinke, Hydrothermal carbonization
of olive mill wastewater, Bioresour. Technol., 133 (2013)
581–588.
- J. Poerschmann, B. Weiner, H. Wedwitschka, I. Baskyr,
R. Koehler, F.D. Kopinke, Characterization of biocoals and
dissolved organic matter phases obtained upon hydrothermal
carbonization of brewer’s spent grain, Bioresour. Technol.,
164 (2014) 162–169.
- M.T. Reza, A. Freitas, X. Yang, C.J. Coronella, Wet air oxidation
of hydrothermal carbonization (HTC) process liquid, ACS
Sustain. Chem. Eng., 4 (2016) 3250−3254.
- B. Weiner, I. Baskyr, J. Poerschmann, F.D. Kopinke, Potential of
the hydrothermal carbonization process for the degradation of
organic pollutants, Chemosphere, 92 (2013) 674–680.
- S. Yin, Z. Tan, Hydrothermal liquefaction of cellulose to bio–
oil under acidic, neutral and alkaline conditions, Appl. Energy,
92 (2012) 234–239.
- Z. Srokol, A.G. Bouche, A. Estrik, R.C.J. Strik, T. Maschmeyer,
J.A. Peters, Hydrothermal upgrading of biomass to biofuel;
studies on some monosaccharide model compounds,
Carbohydr. Res., 339 (2004) 1717–1726.
- D. Esposito, M. Antonietti, Chemical conversion of sugars to
lactic acid by alkaline hydrothermal processes, ChemSusChem,
6 (2013) 989–992.
- Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang,
Y. Wang, C. Zhu, Z. Cao, G. Wang, H. Wan, Chemical synthesis
of lactic acid from cellulose catalysed by lead (II) ions in water,
Nat. Commun., 4 (2013) 2141–2147.
- H. Zhao, J.E. Holladay, H. Brown, Z. Zhang, Metal chlorides in
ionic liquid solvents convert sugars to 5–hydroxymethylfurfural,
Science, 316 (2007) 1597–1600.
- L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang, Y. Gong, Catalytic
conversion of cellulose to levulinic acid by metal chlorides,
Molecules, 15 (2010) 5258–5272.
- Z. Ding, J. Shi, J. Xiao, W. Gu, C. Zheng, H. Wang, Catalytic
conversion of cellulose to 5–hydroxymethyl furfural using
acidic ionic liquids and co–catalyst, Carbohydr. Polym.,
90 (2012) 792– 798.
- S.B.A. Hamid, S.J. Teh, Y.S. Lim. Catalytic hydrothermal
upgrading of α–cellulose using iron salts as a Lewis acid,
Bioresources, 10 (2015) 5974–5986.
- J. Hao, W. Zhang, G. Xue, P. Rao, R. Wang, Treatment of
distillation residue waste liquid from NPEOs by hydrothermal
carbonization process for resource recovery, Desal. Wat. Treat.,
125 (2018) 26–31.
- State Environmental Protection Administration of China, Water
and Wastewater Monitoring and Analysis Methods, 4th ed.,
China Environmental Science Press, Beijing, 2002, pp. 210–213.
- S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu,
C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: a novel
sorbent for removal of Ni (II) ions from aqueous solution, Desal.
Wat. Treat., 50 (2012) 2–13.
- M. Kruk, M. Jaroniec, Gas adsorption characterization of
ordered organic–inorganic nanocomposite materials, Chem.
Mater., 13 (2001) 3169–3183.
- L. Gu, B. Li, H. Wen, X. Zhang, L. Wang, J. Ye, Co-hydrothermal
treatment of fallen leaves with iron sludge to prepare magnetic
iron product and solid fuel, Bioresour. Technol., 257 (2018)
229–237.
- S. Kang, X. Li, J. Fan, J. Chang, Characterization of hydrochars
produced by hydrothermal carbonization of lignin, cellulose,
D–xylose, and wood meal, Ind. Eng. Chem. Res., 51 (2012)
9023–9031.
- H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization
of activated carbon from cotton stalk by microwave assisted
chemical activation–application in methylene blue adsorption
from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
- V. Boonamnuayvitaya, S. Ung–Sae, W. Tanthapanichakoon,
Preparation of activated carbons from coffee residue for the
adsorption of formaldehyde, Sep. Purif. Technol., 42 (2005)
159–168.
- W. Shen, Z. Li, Y. Liu, Surface chemical functional groups
modification of porous carbon, Recent Pat. Chem. Eng., 1 (2008)
27–40.
- J. Mosa, A. Durán, M. Aparicio, Sulfonic acid–functionalized
294 hybrid organic–inorganic proton exchange membranes
synthesized by sol–gel using 3–mercaptopropyl
trimethoxysilane (MPTMS), J. Power Sources, 297 (2015)
208–216.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys.
Chem., 57 (1906) 385–470.
- O. Kazaka, Y.R. Ekerb, I. Akinc, H. Bingold, A. Tora, A novel
red mud@sucrose based carbon composite: preparation,
characterization and its adsorption performance toward
methylene blue in aqueous solution, J. Environ. Chem. Eng.,
5 (2017) 2639–2647.
- S. Lagergren, About the theory of so–called adsorption of
soluble substances, K. Sven. Vetensk. Handl., 24 (1898) 1–39.
- Y. Ho, G. McKay, Pseudo–second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.