References

  1. K. Kruanak, C. Jarusutthirak, Degradation of 2,4,6-trichlorophenol in synthetic wastewater by catalytic ozonation using alumina supported nickel oxides, J. Environ. Chem. Eng., 7 (2019) 102825.
  2. S. Benjakul, F. Bauer, Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles, Food Chem., 72 (2001) 207–217.
  3. H. Kojima, M. Iida, E. Katsura, A. Kanetoshi, Y. Hori, K. Kobayashi, Effects of a diphenyl ether-type herbicide, chlornitrofen, and its amino derivative on androgen and estrogen receptor activities, Environ. Health Perspect., 111 (2002) 497–502.
  4. J. Kobayashi, M. Sakai, H. Kajihara, Y. Takahash, Temporal trends and sources of PCDD/Fs, pentachlorophenol and chlornitrofen in paddy field soils along the Yoneshiro River basin, Japan, Environ. Pollut., 156 (2008) 1233–1242.
  5. G.R. Chang, H.S. Chen, F.Y. Lin, Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS), Mar. Pollut. Bull., 113 (2016) 579–584.
  6. L. Li, P.A.Q. Quinlivan, D.R.U. Knapp, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
  7. W. Cai, J. Yu, M. Jaroniec, Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water, J. Mater. Chem., 20 (2010) 4587–4594.
  8. X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants, RSC Adv., 2 (2012) 8821–8826.
  9. Q. Wen, Z. Chen, J. Lian, Y. Feng, N. Ren, Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM), J. Hazard. Mater., 209 (2012) 226–232.
  10. J. Ru, H. Liu, J. Qu, A. Wang, R. Dai, Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent, J. Hazard. Mater., 141 (2007) 61–69.
  11. M. Lu, Y. Zhang, Y. Zhou, Z. Su, B. Liu, G. Li, T. Jiang, Adsorption-desorption characteristics and mechanisms of Pb (II) on natural vanadium, titanium-bearing magnetite-humic acid magnetic adsorbent, Powder Technol., 344 (2019) 947–958.
  12. Y. Cui, J. Yu, M. Su, Z. Jia, T. Liu, G. Oinuma, T. Yamauchi, Humic acid removal by gas–liquid interface discharge plasma: performance, mechanism and comparison to ozonation, Environ. Sci. Water Res., 5 (2019) 152–160.
  13. Y. Shen, S. Zhao, Y. Li, Q. Liu, C. Ma, H. Mao, Y. Liao, J. Ma, A feasible approach to dispose of soil washing wastes: adsorptive removal of chlorobenzene compounds in aqueous solutions using humic acid modified with monoolein (HA-M), RSC Adv., 7 (2017) 9662–9668.
  14. M.Z. Afzal, R. Yue, X.F. Sun, C. Song, S.G. Wang, Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads, J. Colloid Interface Sci., 543 (2019) 76–83.
  15. H. Wang, J. Zhu, Q.L. Fu, J. W. Xiong, C. Hong, H.Q. Hu, A. Violante, Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes, Pedosphere, 25 (2015) 405–414.
  16. E. Illés, E. Tombácz, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Colloid Interface Sci., 295 (2006) 115–123.
  17. N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam, S. Sivanesan, Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull, J. Hazard. Mater., 151 (2008) 316–322.
  18. M. Nakamura, T. Suzuki, K.I. Amano, S. Yamada, Relation of sorption behavior of agricultural chemicals in solid-phase extraction with their n-octanol/water partition coefficients evaluated by high-performance liquid chromatography (HPLC), Anal. Chim. Acta, 2 (2001) 219–226.
  19. J.E. Riviere, J.D. Brooks, Predicting skin permeability from complex chemical mixtures, Toxicol. Appl. Pharm., 2 (2005) 99–110.
  20. E.K. Radwan, H.H.A. Ghafar, A.S. Moursy, C.H. Langford, A.H. Bedair, G. Achari, Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micropollutants, Environ. Sci. Pollut. Res., 22 (2015) 12035–12049.
  21. Y. Shen, R. Yang, Y. Liao, J. Ma, H. Mao, S. Zhao, Tannin modified aminated silica as effective absorbents for removal of light rare earth ions in aqueous solution, Desal. Wat. Treat., 39 (2016) 18529–18536.
  22. J.C. Cancilla, R. Aroca-Santos, K. Wierzchoś, J.S. Torrecilla, Hazardous aromatic VOC quantification through spectroscopic analysis and intelligent modeling to assess drinking water quality, Chemometr. Intell. Lab. Sys., 156 (2016) 102–107.
  23. Z. Zhang, Z. Jiang, W. Shangguan, Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review, Catal. Today, 264 (2016) 270–278.
  24. H. Su, Q. Li, T. Tan, Double-functional characteristics of a surface molecular imprinted adsorbent with immobilization of nano-TiO2, J. Chem. Technol. Biotechnol., 11 (2006) 1797–1802.
  25. A. Khalilzadeh, S. Fatemi, Modification of nano-TiO2 by doping with nitrogen and fluorine and study acetaldehyde removal under visible light irradiation, Clean Technol. Environ. Policy, 3 (2014) 629–636.
  26. D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, Z. Sun, Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation, Chemosphere, 185 (2017) 574–581.
  27. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 63 (2002) 1909–1920.
  28. W.P. Hsieh, J.R. Pan, C. Huang, Y.C. Su, Y.J. Juang, Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron, Sci. Total Environ., 3 (2010) 672–679.
  29. E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip, J. Tuček, K.C. Vasilopoulos, J. Pechoušek, R. Zbořil, Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water, Phys. Chem. Chem. Phys., 15 (2016) 10637–10646.
  30. P. Oleszczuk, M. Kołtowski, Effect of co-application of nanozero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils, Chemosphere, 168 (2017) 1467–1476.
  31. Y. Yang, Q. Jin, D. Mao, J. Qi, Y. Wei, R. Yu, A. Li, S. Li, H. Zhao, Y. Ma, L. Wang, W. Hu, D. Wang, Dually ordered porous TiO2-rGO composites with controllable light absorption properties for efficient solar energy conversion, Adv. Mater., 29 (2017) 160475.