References

  1. Y. Yu, K. Hubacek, K. Feng, D. Guan, Assessing regional and global water footprints for the UK, Ecol. Econ., 69 (2010) 1140–1147.
  2. N.R. Mizyed, Challenges to treated wastewater reuse in arid and semi-arid areas, Environ. Sci. Policy, 25 (2013) 186–195.
  3. R. Khlifi, H. Chaffai, Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: a review, Toxicol. Appl. Pharmacol., 248 (2010) 71–88.
  4. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  5. G. Khitrov, R. Jaeger, Chromium Toxicity, The Ronald O. Perlman Department of Dermatology, Department of Toxicology NYU Grad School of Arts and Science. Available: http://www.nyu.edu/classes/jaeger/chromium_toxicity.htm. (Accessed 20 November 2013).
  6. M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190 (2011) 381–390.
  7. W.S. Wan Ngah, H. Makm, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  8. M. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  9. W. Büchner, R. Schliébs, G. Winter, K.H. Bucjel, Primary Inorganic Materials, In D.H. Dyllick-Brenzinger, Industrial Inorganic Chemistry, 1989, pp. 8–12, Verlagsgesellschaft, New York.
  10. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug Delivery Rev., 63 (2011) 24–46.
  11. S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: a comprehensive review, J. Ind. Eng. Chem., 56 (2017) 35–44.
  12. P. Khanna, C. Ong, B. Bay, G. Baeg, Nanotoxicity: an interplay of oxidative stress, inflammation and cell death, Nanomaterials, 5 (2015) 1163–1180.
  13. A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater., 55 (2009) 22–45.
  14. A.M. Seid-Mohammadi, Gh. Asgari, M.T. Sammadi, M. Ahmadian, A. Poormohammadi, Removal of humic acid from synthetic water using chitosan as coagulant aid in electrocoagulation process for Al and Fe electrodes, Res. J. Chem. Environ., 18 (2014) 19–25.
  15. M.M. Sagrario, L.A. Gracia-Cerda, T.J.R. Lubian, Preparation and characterization of cobalt ferrite by the polymerized complex method, Mater. Lett., 59 (2005) 1056–1060.
  16. B.R. Galindo, A.O. Valenzuela, L.A. Gracia-Cerda, R.O. Fernandez, M.J. Aquino, G. Ramos, Y.H. Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles, J. Magn. Mag. Mater., 294 (2005) e33–e36.
  17. Z.L. Liu, X. Wang, K.L. Yao, G.H. Du, Q.H. Lu, Z.H. Ding, J. Tao, Q. Ning, X.P. Luo, D.Y. Tian, D. Xi, Synthesis of magnetite nanoparticles in W/O microemulsion, J. Mater. Sci., 39 (2004) 2633–2636.
  18. P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles, Langmuir, 15 (1999) 1945–1951.
  19. K. Sunderland, P. Brunetti, L. Spinu, J. Fang, Z. Wang, W. Lu, Synthesis of γ-Fe2O3/polypyrrole nanocomposite materials, Mater. Lett., 58 (2004) 3136–3140.
  20. L.A. Gracia-Cerda, R. Chapa-Rodriguez, J. Bonilla-Rios, In situ synthesis of iron oxide nanoparticles in a styrenedivinylbenzene copolymer, Polym. Bull., 58 (2007) 989–994.
  21. H. Lin, Y. Watanabe, M. Kumura, K. Hanabusa, H. Shirai, Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix, J. Appl. Polym. Sci., 87 (2003) 1239–1247.
  22. P.S. Chowdhury, P.R. Arya, K. Raha, Green synthesis of nanoscopic iron oxide particles: a potential oxidizer in nanoenergetics, Synth. React. Inorg. Met., 37 (2007) 447–451.
  23. D.M. Kim, M. Mikhaylova, F.H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, M. Muhammed, Starch-coated superparamagnetic nanoparticles as MR contrast agents, Chem. Mater., 15 (2003) 4343–4351.
  24. Y.-Y. Liang, L.-M. Zhang, W. Li, Polysaccharide-modified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin, Colloid Polym. Sci., 285 (2007) 1193–1199.
  25. O. Carp, D. Visinescu, G. Patrinoiu, A. Tirsoaga, Green synthetic strategies of oxide materials: polysaccharides-assisted synthesis. Part IV. Alginate-assisted synthesis of nanosized metal oxides, Rev. Roum. Chim., 56 (2011) 901–906.
  26. S. Plumejeau, J.G. Alauzun, B. Boury, Hybrid metal oxide@ biopolymer materials precursors of metal oxides and metal oxide-carbon composites, Ceram. Soc. Jpn., 123 (2015) 695–708.
  27. A. Ali, H. Zafar, M. Zia, I. ul Haq, A.-R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl., 9 (2016) 49–67.
  28. M. Nidhin, R. Indumathy, K.J. Sreeram, B. Unninair, Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates, Bull. Mater. Sci., 31 (2008) 93–96.
  29. S.K. Janardhanan, I. Ramasamy, B. Unni Nair, Synthesis of iron oxide nanoparticles using chitosan and starch templates, Trans. Met. Chem., 33 (2008) 127–131.
  30. S. Chen, J. Feng, X. Guo, J. Hong, W. Ding, One-Step Wet Chemistry for Preparation of Magnetite Nano-rods, Mater. Lett., 59 (2005) 985–988.
  31. S. Basavaraja, D.S. Balaji, M.D. Bedre, Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles, Bull. Mater. Sci., 34 (2011) 1313–1317.
  32. J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths Publ., England, 1975.
  33. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry, A. Meyers, Ed., John Wiley & Sons Ltd., Chichester, 2000, p. 10815.
  34. V.C. Farmer, The Infrared Spectra of Minerals, Mineralogical Society, London, 1974, p. 539.
  35. M.M. Rahman, S.B. Khan, A. Jamal, Iron Oxide Nanoparticles, Intech Open access publisher, 2011, p. 43.
  36. T.M. Tamer, W.M. Abou-Taleb, G.D. Roston, M.S. Mohyeldin, A.M. Omer, E.F. Shehata, Characterization and evaluation of iron oxide nanoparticles prepared using hydrogel template based on phosphonate alginate, Nanosci. Nanotechnol.-Asia, 7 (2017) 220–232.
  37. M. Hua, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211–212 (2012) 317–331.
  38. D. Kitkaew, A. Phetrak, S. Ampawong, R. Mingkhwan, D. Phihusut, K. Okanurak, C. Polprasert, Fast and efficient removal of hexavalent chromium from water by iron oxide particles, Environ. Nat. Resour. J., 16 (2018) 91–100.
  39. D.S. Shirsath, B.N. Patil, V.S. Shrivastava, Development of new technology for the removal of Cr6+ by magnetic nanoadsorbents from the industrial or sewage wastewater, J. Mater. Environ. Sci., 9 (2018) 1969–1978.
  40. K.A. Al-Saad, M.A. Amr, D.T. Hadi, R.S. Arar, M.M. AL-Sulaiti, T.A. Abdulmalik, N.M. Alsahamary, J.C. Kwak, Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water, Arab. J. Nucl. Sci. Appl., 45 (2012) 335–346.
  41. B. Lkhagvadulam, B. Tsagaantsetseg, D. Tergel, S. Chuluunkhuyag, Removal of chromium from a tannery wastewater by using a maghemite nanoparticles, Int. J. Environ. Sci. Dev., 8 (2017) 696–702.
  42. R. Ansari, Application of polyaniline and its composites for adsorption/recovery of chromium (VI) from aqueous solutions, Acta Chim. Slov., 53 (2006) 88–94.
  43. P. Yuan, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater., 173 (2010) 614–621.
  44. R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad, Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI), Environ. Sci. Pollut. Res. Int., 20 (2013) 7175–7185.
  45. H.I. Adegoke, F.A. Adekola, O.S. Fatoki, B.J. Ximba, Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies, Korean J. Chem. Eng., 31 (2013) 142–154.
  46. S. Ramasubramaniam, C. Govindarajan, T. Gomathi, P.N. Sudha, Removal of chromium (VI) from aqueous solution using chitosan-starch blend, Der Pharm. Lett., 4 (2012) 240–248.
  47. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol., 68 (2009) 312–319.
  48. F. Rozada, L.F. Calvo, A.I. Garcia, J. Martin-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol., 87 (2003) 221–230.
  49. G. Gode, E. Pehlivan, Adsorption of Cr(III) ions by Turkish brown coals, Fuel Process. Technol., 86 (2005) 875–884.
  50. Y.S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour. Technol., 96 (2005) 1292–1296.
  51. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of active carbons I. adsorption of organic vapors, Zhurnal Fizicheskoi Khimii, 21 (1947) 1351–1362.
  52. N. Unlü, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136 (2006) 272–280.
  53. A. Mohammad, A.K.R. Rifaqat, A. Rais, A. Jameel, adsorption studies on citus reticulate (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater, J. Hazard. Mater., 79 (2000) 117–131.
  54. A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 56 (2001) 69–80.
  55. B.H. Hameeda, L.H. China, S. Rengarajb, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185–198.
  56. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim. URSS, 12 (1940) 327–356.
  57. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  58. M. Ozacar, I.A. Sengil, A kinetic study of metal complex dye sorption onto pinedust, Process Biochem., 40 (2005) 565–572.
  59. P.K. Pandey; S.K. Sharma; S.S. Sambi, Kinetics and equilibrium study of chromium adsorption on zeoliteNaX, Int. J. Environ. Sci. Technol., 7 (2010) 395–404.
  60. M. Barkat, D. Nibou, S. Chegrouche, A. Mellah, Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions, Chem. Eng. Process. Process Intensif., 48 (2009) 38–47.
  61. R.L. Tseng, Mesopore control of high surface area NaOHactivated carbon, J. Colloid Interface Sci., 303 (2006) 494–502.
  62. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C. I. Basic Green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies, Sep. Purif. Technol., 53 (2007) 97–110.
  63. G. McKay, The adsorption of dyestuffs from aqueous solution using activated carbon: analytical solution for batch adsorption based on external mass transfer and pore diffusion, Chem. Eng. J., 27 (1983) 187–195.
  64. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanity, Eng. Div. Am. Soc. Civil. Eng., 89 (1963) 31–59.
  65. K. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study, Dyes Pigm., 51 (2001) 25–40.
  66. M. Sarkar, P.K. Acharya, B. Bhaskar, Modeling the removal kinetics of some priority organic pollutants in water from diffusion and activation energy parameters, J. Colloid Interface Sci., 266 (2003) 28–32.
  67. G. McKay, M.S. Otterburn, J.A. Aja, Fuller’s earth and fired clay as adsorbents for dye stuffs, Water Air Soil Pollut., 24 (1985) 307–322.
  68. S.K. Abdul Karim, S.F. Lim, S.N. David Chua, S.F. Salleh, P.L. Law, Banana fibers as sorbent for removal of acid green dye from water, J. Chem., 2016 (2016) 1–11.
  69. T.A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution, Appl. Clay Sci., 69 (2012) 58–66.
  70. G. Zhao, J. Li, X. Wang, Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets, Chem. Eng. J., 173 (2011) 185–190.
  71. M. Alkan, O. Demirbas, S.Ç.M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite, J. Hazard. Mater., B116 (2004) 135–145.
  72. N.K. Hamadi, X.D. Chen, M.M. Farid, M.G.Q. Lu, Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust, Chem. Eng. J., 84 (2001) 95–105.
  73. H.-D. Choi, J.-M. Cho, K. Baek, J.-S. Yang, J.-Y. Lee, Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon, J. Hazard. Mater., 161 (2009) 1565–1568.
  74. H.-D. Choi, W.-S. Jung, J.-M. Cho, B.-G. Ryun, J.-S. Yang, K. Baek, Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon, J. Hazard. Mater., 166 (2009) 642–646.
  75. S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468 (2016) 334–346.
  76. W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J., 162 (2010) 677–684.
  77. N.H. Singh, K. Kezo, A. Debnath, B. Saha, Enhanced adsorption performance of a novel Fe-Mn-Zr metal oxide nanocomposite adsorbent for anionic dyes from binary dye mix: response surface optimization and neural network modeling, Appl. Organometal Chem., 32 (2018) e4165.
  78. M. Bhowmik, K. Deb, A. Debnath, B. Saha, Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: neural network modeling and response surface methodology optimization, Appl. Organometal Chem., 32 (2018) e4186.
  79. M. Bhowmik, A. Debnath, B. Saha, Fabrication of mixed phase calcium ferrite and zirconia nanocomposite for abatement of methyl orange dye from aqua matrix: optimization of process parameters, Appl. Organometal Chem., 32 (2018) e4607.
  80. A. Debnatha, K. Deb, K.K. Chattopadhyay, Biswajit Saha, Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling, Desal. Wat. Treat., 57 13549–13560.
  81. N.H. Singh, A. Bera, A. Debnath, B. Saha, Mixed phase crystalline hausmannite and manganese ferrite nanoparticles with magnetic properties for environmental application, Mater. Today Proc., 5 (2018) 2300–2305.