References

  1. N. Bensalah, M.A. Quiroz Alfaro, C.A. Martinez-Huitle, Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye, Chem. Eng. J., 149 (2009) 348–352.
  2. S. Dawood, T.K. Sen, C. Phan, Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of Congo red dye from aqueous solution by adsorption, Water Air Soil Pollut., 225 (2014) 1–16.
  3. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  4. D. Karadag, E. Akgul, S. Tok, F. Erturk, M.A. Kaya, M. Turan, Basic and reactive dye removal using natural and modified zeolites, J. Chem. Eng. Data, 52 (2007) 2436–2441.
  5. M. Asgher, H.N. Bhatti, Evaluation of thermodynamics and effect of chemical treatments on sorption potential of citrus waste biomass for removal of anionic dyes from aqueous solutions, Ecol. Eng., 38 (2012) 79–85.
  6. M.T. Yagub, T.K. Sen, H.M. Ang, Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves, Water Air Soil Pollut., 223 (2012) 5267–5282.
  7. L.D.T. Prola, E. Acayanka, E.C. Lima, C.S. Umpierres, J.C.P. Vaghetti, W.O. Santos, S. Laminsi, P.T. Djifon, Comparison of Jatropha curcas shells in natural form and treated by nonthermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution, Ind. Crops Prod., 46 (2013) 328–340.
  8. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage., 90 (2009) 2313–2342.
  9. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C.I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
  10. O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous Mesoporous Mater., 210 (2015) 176–184.
  11. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  12. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  13. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  14. D. Klinar, Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment, Bioresour. Technol., 206 (2016) 112–120.
  15. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review, Bioresour. Technol., 160 (2014) 191–202.
  16. L.J. Leng, X.Z. Yuan, H.J. Huang, J.G. Shao, H. Wang, X.H. Chen, G.M. Zeng, Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption, Appl. Surf. Sci., 346 (2015) 223–231.
  17. J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng., 4 (2016) 266–275.
  18. H. Li, S.A.A. Mahyoub, W. Liao, S. Xia, H. Zhao, M. Guo, P. Ma, Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue, Bioresour. Technol., 223 (2017) 20–26.
  19. T. Zehra, N. Priyantha, L.B.L. Lim, E. Iqbal, Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat, Desal. Wat. Treat., 54 (2015) 2592–2600.
  20. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1–39.
  21. Y.S. Ho, G. Mckay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot., 76 (1998) 183–191.
  22. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., ASCE, 89 (1963) 31–60.
  23. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  24. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. A, 57 (1906) 358–471.
  25. Mu. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. ALOthman, Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desal. Wat. Treat., 57 (2016) 18551–18559.
  26. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265 (2011) 159–168
  27. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  28. H.N. Tran, S.-J. You, H.-P. Chao, Y.-F. Wang, Sustainable Biochar Derived from Agricultural Wastes for Removal of Methylene Green 5 from Aqueous Solution: Adsorption Kinetics, Isotherms, Thermodynamics, and Mechanism Analysis, Chapter 12, T.K. Sen, Ed., Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents, CRC Press, USA, 2017, p. 255.
  29. X.B. Wang, W. Zhou, G.Q. Liang, D. Song, X.Y. Zhang, Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil, Sci. Total Environ., 538 (2015) 137–144.
  30. X.J. Zhang, L. Zhang, A.M. Li, Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal, J. Environ. Manage., 206 (2018) 989–998.
  31. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem., 87 (2015) 1051–1069.
  32. M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Cleaner Prod., 171 (2018) 57–65.
  33. G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  34. Q.L. Ma, W. Song, R.B. Wang, J. Zou, R.D. Yang, S.B. Zhang, Physicochemical properties of biochar derived from anaerobically digested dairy manure, Waste Manage., 79 (2018) 729–734.
  35. A.K. Kushwaha, N. Gupta, M.C. Chattopadhyaya, Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota, J. Saudi Chem. Soc., 18 (2014) 200–207.
  36. F. Deniz, S.D. Saygideger, Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf, Desalination, 268 (2011) 6–11.
  37. F. Deniz, S. Karaman, S.D. Saygideger, Biosorption of a model basic dye onto Pinus brutia Ten.: evaluating of equilibrium, kinetic and thermodynamic data, Desalination, 270 (2011) 199–205.
  38. F. Deniz, S. Karaman, Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue, Microchem. J., 99 (2011) 296–302.
  39. S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution, Desal. Wat. Treat., 54 (2014) 1–14.
  40. R. Rehman, S.J. Muhammad, M. Arshad, Brilliant green and acid Orange 74 dyes removal from water by Pinus roxburghii leaves in naturally benign way: an application of green chemistry, J. Chem., 2019 (2019) 10 p, https://doi.org/10.1155/2019/3573704.
  41. M. Jain, V.K. Garg, K. Kadirvelu, Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass, J. Environ. Manage., 91 (2010) 949–957.
  42. A. Geetha, N. Palanisamy, Equilibrium and kinetic studies for the adsorption of Basic Red 29 from aqueous solutions using activated carbon and conducting polymer composite, Desal. Wat. Treat., 57 (2015) 8406–8419.
  43. P.N. Palanisamy, A. Agalya, P. Sivakumar, Polymer composite—a potential biomaterial for the removal of reactive dye, E-J. Chem., 9 (2012) 1823–1834.
  44. A. Gücek, S. Şener, S. Bilgen, M.A. Mazmancı, Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions, J. Colloid Interface Sci., 286 (2005) 53–60.
  45. E. Ayranci, O. Duman, Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, J. Hazard. Mater., 148 (2007) 75–82.
  46. O. Duman, C. Özcan, T.G. Polat, S. Tunç, Carbon nanotubebased magnetic and non-magnetic adsorbents for the highefficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites, Environ. Pollut., 244 (2019) 723–732.
  47. O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and p‐phenolsulfonate from water, acid, or base solutions onto activated carbon cloth, Sep. Sci. Technol., 41 (2006) 3673–3692.
  48. O. Duman, E. Ayranci, Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon-cloth, J. Hazard. Mater., 120 (2005) 173–181.
  49. G.Z. Kyzas, N.K. Lazaridis, A.Ch. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach, Chem. Eng. J., 189–190 (2012) 148–159.
  50. F. Deniz, S. Karaman, Removal of Basic Red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J., 170 (2011) 67–74.
  51. F. Deniz, S. Karaman, S.D. Saygideger, Biosorption of a model basic dye onto Pinus brutia Ten.: evaluating of equilibrium, kinetic and thermodynamic data, Desalination, 270 (2011) 199–205.
  52. M.S. Tanyildizi, Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull, Chem. Eng. J., 168 (2011) 1234–1240.
  53. P. Srivatsa, B. Tanwar, S. Goyal, P.K. Patnala, A comparative study of sonosorption of Reactive Red 141 dye on TiO2, banana peel, orange peel and hardwood saw dust, J. Appl. Chem., 1 (2012) 505–511.
  54. M.U. Dural, L. Cavas, S.K. Papageorgiou, F.K. Katsaros, Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies, Chem. Eng. J., 168 (2011) 77–85.