References
- K.P. Fattah, D.S. Mavinic, F.A. Koch, Influence of process
parameters on the characteristics of struvite pellets, J. Environ.
Eng., 138 (2012) 1200–1209.
- Q. Ping, Y.M. Li, X.H. Wu, L. Yang, L. Wang, Characterization
of morphology and component of struvite pellets crystallized
from sludge dewatering liquor: effects of total suspended solid
and phosphate concentrations, J. Hazard. Mater., 310 (2016)
261–269.
- Y.-J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.-H. Huang,
M.-C. Lu, Recovery of phosphorus from synthetic wastewaters
by struvite crystallization in a fluidized-bed reactor: effects of
pH, phosphate concentration and coexisting ions, Chemosphere,
173 (2017) 466–473.
- S.G. Barbosa, L. Peixoto, B. Meulman, M.M. Alves, M.A. Pereira,
A design of experiments to assess phosphorous removal and
crystal properties in struvite precipitation of source separated
urine using different Mg sources, Chem. Eng. J., 298 (2016)
146–153.
- D. Crutchik, J.M. Garrido, Kinetics of the reversible reaction of
struvite crystallisation, Chemosphere, 154 (2016) 567–572.
- N. Hutnik, A. Kozik, A. Mazienczuk, K. Piotrowski, B. Wierzbowska,
A. Matynia, Phosphates (V) recovery from phosphorus
mineral fertilizers industry wastewater by continuous struvite
reaction crystallization process, Water Res., 47 (2013) 3635–3643.
- E. Tarragó, S. Puig, M. Ruscalleda, M.D. Balaguer, J. Colprim,
Controlling struvite particles’ size using the up-flow velocity,
Chem. Eng. J., 302 (2016) 819–827.
- Y.-H. Song, G.-L. Qiu, P. Yuan, X.-Y. Cui, J.-F. Peng, P. Zeng,
L. Duan, L.-C. Xiang, F. Qian, Nutrients removal and recovery
from anaerobically digested swine wastewater by struvite
crystallization without chemical additions, J. Hazard. Mater.,
190 (2011) 140–149.
- K. Suzuki, Y. Tanaka, T. Osada, M. Waki, Removal of phosphate,
magnesium and calcium from swine wastewater through
crystallization enhanced by aeration, Water Res., 36 (2002)
2991–2998.
- P.J. Talboys, J. Heppell, T. Roose, J.R. Healey, D.L. Jones,
P.J.A. Withers, Struvite: a slow-release fertiliser for sustainable
phosphorus management?, Plant Soil, 401 (2016) 109–123.
- R. Cabeza, B. Steingrobe, W. Römer, N. Claassen, Effectiveness
of recycled P products as P fertilizers, as evaluated in pot
experiments, Nutr. Cycling Agroecosyst., 91 (2011) 173–184.
- R. Boistelle, F. Abbona, Nucleation of struvite (MgNH4PO4·6H2O)
single crystals and aggregates, Cryst. Res. Technol., 20 (1985)
133–140.
- J.W. Mullin, Crystallization, 4th ed., Elsevier Butterworth-Heinemann, Oxford, 2001.
- C.M. Mehta, D.J. Batstone, Nucleation and growth kinetics of
struvite crystallization, Water Res., 47 (2013) 2890–2900.
- K. Shimamura, T. Tanaka, Y. Miura, H. Ishikawa, Development
of a high-efficiency phosphorus recovery method using a
fluidized-bed crystallized phosphorus removal system, Water
Sci. Technol., 48 (2003) 163–170.
- A. Adnan, M. Dastur, D.S. Mavinic, F.A. Koch, Preliminary
investigation into factors affecting controlled struvite
crystallization at the bench scale, J. Environ. Eng. Sci., 3 (2004)
195–202.
- S. Titiz-Sargut, J. Ulrich, Application of a protected ultrasound
sensor for the determination of the width of the metastable
zone, Chem. Eng. Process. Process Intensif., 42 (2003) 841–846.
- T.L. Threlfall, S.J. Coles, A perspective on the growth-only
zone, the secondary nucleation threshold and crystal size
distribution in solution crystallisation, CrystEngComm., 18 (2016)
369–378.
- H.Y. Yang, Relation between metastable zone width and
induction time of butyl paraben in ethanol, CrystEngComm.,
17 (2015) 577–586.
- I. Ali, P.A. Schneider, Crystallization of struvite from metastable
region with different types of seed crystal, J. Non-Equilib.
Thermodyn., 30 (2005) 95–111.
- M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, Nucleation and
growth kinetics of struvite in a fluidized bed reactor, J. Cryst.
Growth, 310 (2008) 1187–1194.
- E. Ariyanto, Crystallisation and Dissolution Studies of Struvite in
Aqueous Solutions, Curtin University, Perth, Western Australia,
2013.
- L.P. Qiu, L. Shi, Z. Liu, K. Xie, J.B. Wang, S.B. Zhang,
Q.Q. Song, L.Q. Lu, Effect of power ultrasound on crystallization
characteristics of magnesium ammonium phosphate, Ultrason.
Sonochem., 36 (2017) 123–128.
- C. Sartorius, J. von Horn, F. Tettenborn, Phosphorus recovery
from wastewater—expert survey on present use and future
potential, Water Environ. Res., 84 (2012) 313–322.
- K.N. Ohlinger, T.M. Young, E.D. Schroeder, Predicting struvite
formation in digestion, Water Res., 32 (1998) 3607–3614.
- M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans,
M. Frèche, L. Pibouleau, Temperature impact assessment
on struvite solubility product: a thermodynamic modeling
approach, Chem. Eng. J., 167 (2011) 50–58.
- R.R. Hemrajani, G.B. Tatterson, Mechanically Stirred Vessels,
Chapter 6, E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Eds.,
Handbook of Industrial Mixing: Science and Practice, John
Wiley & Sons, Inc., New Jersey, 2004, p. 361.
- L. Egle, H. Rechberger, M. Zessner, Overview and description
of technologies for recovering phosphorus from municipal
wastewater, Resour. Conserv. Recycl., 105 (2015) 325–346.
- M. Ronteltap, M. Maurer, R. Hausherr, W. Gujer, Struvite
precipitation from urine – influencing factors on particle size,
Water Res., 44 (2010) 2038–2046.
- F. Abbona, H.E. Lundager Madsen, R. Boistelle, Crystallization
of two magnesium phosphates, struvite and newberyite:
effect of pH and concentration, J. Cryst. Growth, 57 (1982)
6–14.
- N. Kubota, A new interpretation of metastable zone widths
measured for unseeded solutions, J. Cryst. Growth, 310 (2008)
629–634.
- L.-D. Shiau, The influence of solvent on the pre-exponential
factor and interfacial energy based on the metastable zone
width data, CrystEngComm., 18 (2016) 6358–6364.
- J. Nývlt, Kinetics of nucleation in solutions, J. Cryst. Growth,
3–4 (1968) 377–383.
- E. Lyall, P. Mougin, D. Wilkinson, K.J. Roberts, In situ ultrasonic
spectroscopy study of the nucleation and growth of copper
sulfate pentahydrate batch crystallized from supersaturated
aqueous solutions, Ind. Eng. Chem. Res., 43 (2004) 4947–4956.
- D. Mealey, D.M. Croker, Å.C. Rasmuson, Crystal nucleation of
salicylic acid in organic solvents, CrystEngComm., 17 (2015)
3961–3973.
- K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Kinetics
of struvite precipitation: effect of the magnesium dose on
induction times and precipitation rates, Environ. Technol.,
28 (2007) 1317–1324.
- O. Sahin, M. Ozdemir, M.S. Izgp, H. Demir, A.A. Ceyhan,
Determination of nucleation kinetics of ammonium biborate
tetrahydrate, Rev. Chim., 65 (2014) 1–5.
- K.P. Liang, G. White, D. Wilkinson, L.J. Ford, K.J. Roberts,
W.M.L. Wood, Examination of the process scale dependence of
L-glutamic acid batch crystallized from supersaturated aqueous
solutions in relation to reactor hydrodynamics, Ind. Eng. Chem.
Res., 43 (2004) 1227–1234.
- L. Bauer, R.W. Rousseau, W.L. McCabe, Influence of crystal size
on the rate of contact nucleation in stirred-tank crystallizers,
AIChE J., 20 (1974) 653–659.
- N. Gherras, G. Fevotte, Comparison between approaches for
the experimental determination of metastable zone width: a
case study of the batch cooling crystallization of ammonium
oxalate in water, J. Cryst. Growth, 342 (2012) 88–98.
- S. Kataki, H. West, M. Clarke, D.C. Baruah, Phosphorus
recovery as struvite: recent concerns for use of seed, alternative
Mg source, nitrogen conservation and fertilizer potential,
Resour. Conserv. Recycl., 107 (2016) 142–156.
- A. Adnan, F.A. Koch, D.S. Mavinic, Pilot-scale study of
phosphorus recovery through struvite crystallization — II:
applying in-reactor supersaturation ratio as a process control
parameter, J. Environ. Eng. Sci., 2 (2003) 473–483.
- K. Shimamura, I. Hirasawa, H. Ishikawa, T. Tanaka, Phosphorus
recovery in a fluidized bed crystallization reactor, J. Chem. Eng.
Jpn., 39 (2006) 1119–1127.
- S.S. Kadam, S.A. Kulkarni, R.C. Ribera, A.I. Stankiewicz, J.H.
ter Horst, H.J.M. Kramer, A new view on the metastable zone
width during cooling crystallization, Chem. Eng. Sci., 72 (2012)
10–19.