References

  1. C. Xue, X. Kong, S. Wang, M. Xue, L. Wei, G. Zhao, X. Song, Current status, development and incentive policy requirements for sludge treatment and disposal in urban areas of China, Water Purif. Technol., 37 (2018) 33–39.
  2. A. Kelessidis, A.S. Stasinakis, Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries, Waste Manage., 32 (2012) 1186–1195.
  3. A.K. Venkatesan, H.Y. Done, R.U. Halden, United States National Sewage Sludge Repository at Arizona State University— a new resource and research tool for environmental scientists, engineers, and epidemiologists, Environ. Sci. Pollut. Res., 22 (2015) 1577–1586.
  4. H. Li, K. Feng, Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis, J. Cleaner Prod., 195 (2018) 476–485.
  5. K.S.B. Kameswari, C. Kalyanaraman, B. Abirami, K. Thirumaran, Elimination of chemical sludge for treatment of tannery wastewater and its effect on biogas generation, Desal. Wat. Treat., 131 (2018) 162–168.
  6. Y. Li, Y.G. Chen, J. Wu, Enhancement of methane production in anaerobic digestion process: a review, Appl. Energy, 240 (2019) 120–137.
  7. B. Park, J.H. Ahn, J. Kim, S.H. Wang, Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge, Water Sci. Technol., 50 (2004) 17–23.
  8. D. Boruszko, Applying ultrasonic in the PAHs degradation in sewage sludge, Desal. Wat. Treat., 134 (2018) 15–22.
  9. L. Yu, W. Zhang, H. Liu, G.H. Wang, H.B. Liu, Evaluation of volatile fatty acids production and dewaterability of waste activated sludge with different thermo-chemical pretreatments, Int. Biodeterior. Biodegrad., 129 (2018) 170–178.
  10. V.K. Tyagi, S.-L. Lo, Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review, Rev. Environ. Sci. Biotechnol., 10 (2011) 215.
  11. A.H. Mouneimne, H. Carrère, N. Bernet, J.P. Delgenès, Effect of saponification on the anaerobic digestion of solid fatty residues, Bioresour. Technol., 90 (2003) 89–94.
  12. J. Ye, A. Hu, G. Ren, T. Zhou, G.M. Zhang, S.G. Zhou, Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity, Bioresour. Technol., 247 (2018) 131–137.
  13. P. Phothilangka, M.A. Schoen, B. Wett, Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants, Water Sci. Technol., 58 (2008) 1547–1553.
  14. S. Zhang, P. Zhang, G.M. Zhang, J. Fan, Y. Zhang, Enhancement of anaerobic sludge digestion by high-pressure homogenization, Bioresour. Technol., 118 (2012) 496–501.
  15. N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M, Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol., 96 (2005) 673–686.
  16. E. Dumay, D. Chevalier-Lucia, L. Picart-Palmade, A. Benzaria, A. Gràcia-Julià, C. Blayo, Technological aspects and potential applications of (ultra) high-pressure homogenisation, Trends Food Sci. Technol., 31 (2013) 13–26.
  17. A.M. Diels, C.W. Michiels, High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms, Crit. Rev. Microbiol., 32 (2006) 201–216.
  18. J. Floury, J. Bellettre, J. Legrand, A. Desrumaux, Analysis of a new type of high pressure homogeniser. A study of the flow pattern, Chem. Eng. Sci., 59 (2004) 843–853.
  19. M.S. Doulah, T.H. Hammond, J.S.G. Brookman, A hydrodynamic mechanism for the disintegration of Saccharomyces cerevisiae in an industrial homogenizer, Biotechnol. Bioeng., 17 (1975) 845–858.
  20. C.R. Engler, C.W. Robinson, Disruption of Candida utilis cells in high pressure flow devices, Biotechnol. Bioeng., 23 (1981) 765–780.
  21. R. Stephenson, B. Rabinowitz, S. Laliberte, P. Elson, Teaching an Old Digester New Tricks: Full-Scale Demonstration of the MicroSludge Process to Liquefy Municipal Waste Activated Sludge, WEP Proceedings of the Residuals and Biosolids Management Conference, Kovington, KY, 2005.
  22. S.S. Save, A.B. Pandit, J.B. Joshi, Microbial cell disruption: role of cavitation, Chem. Eng. J., 55 (1994) B67–B72.
  23. L.W. Phipps, Cavitation and separated flow in a simple homogenizing valve and their influence on the break-up of fat globules in milk, J. Dairy Res., 41 (1974) 1–8.
  24. C.L. Rai, P.G. Rao, Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: an approach for excess sludge reduction, Clean Technol. Environ. Policy, 11 (2009) 437.
  25. Chr. Ian E. Ciron, V.L. Gee, A.L. Kelly, M.A.E. Auty, Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties, Food Chem., 130 (2012) 510–519.
  26. J.V. Carbonell, J.L. Navarro, L. Izquierdo, E. Sentandreu, Influence of high pressure homogenization and pulp reduction on residual pectinmethylesterase activity, cloud stability and acceptability of Lane Late orange juice: a study to obtain high quality orange juice with extended shelf life, J. Food Eng., 119 (2013) 696–700.
  27. P. Maresca, F. Donsì, G. Ferrari, Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices, J. Food Eng., 104 (2011) 364–372.
  28. P. Sanguansri, M.A. Augustin, Nanoscale materials development – a food industry perspective, Trends Food Sci. Technol., 17 (2006) 547–556.
  29. D. Chen, Y. Guo, R. Huang, Q. Lu, J. Huang, Pretreatment by ultra-high pressure explosion with homogenizer facilitates cellulase digestion of sugarcane bagasses, Bioresour. Technol., 101 (2010) 5592–5600.
  30. Y. Zhang, P. Zhang, J. Guo, W. Ma, W. Fang, B. Ma, X. Xu, Sewage sludge solubilization by high-pressure homogenization, Water Sci. Technol., 67 (2013) 2399–2405.
  31. R. Cano, S.I. Pérez-Elvira, F. Fdz-Polanco, Energy feasibility study of sludge pretreatments: a review, Appl. Energy, 149 (2015) 176–185.
  32. Y. Zhang, P. Zhang, B. Ma, H. Wu, S. Zhang, X. Xu, Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model, J. Environ. Sci., 24 (2012) 814–820.
  33. E.M. Spiden, B.H.J. Yap, D.R.A. Hill, S.E. Kentish, P.J. Scales, G.J.O. Martin, Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization, Bioresour. Technol., 140 (2013) 165–171.
  34. E.Y. Wuytack, A.M. Diels, C.W. Michiels, Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure, Int. J. Food Microbiol., 77 (2002) 205–212.
  35. F. Donsì, G. Ferrari, E. Lenza, P. Maresca, Main factors regulating microbial inactivation by high-pressure homogenization: operating parameters and scale of operation, Chem. Eng. Sci., 64 (2009) 520–532.
  36. T. Onyeche, O. Schläfer, M. Sievers, Advanced anaerobic digestion of sludge through high pressure homogenisation, J. Solid Waste Technol. Manage., 29 (2003) 56–61.
  37. J.G. dos Santos Aguilar, M. Cristianini, H.H. Sato, Modification of enzymes by use of high-pressure homogenization, Food Res. Int., 109 (2018) 120–125.
  38. W. Fang, P. Zhang, J. Ye, Y. Wu, H. Zhang, J. Liu, Y. Zhu, G. Zeng, Physicochemical properties of sewage sludge disintegrated with high pressure homogenization, Int. Biodeterior. Biodegrad., 102 (2015) 126–130.
  39. Y. Zhang, P. Zhang, G. Zhang, W. Ma, H. Wu, B. Ma, Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization, Bioresour. Technol., 123 (2012) 514–519.
  40. J.C. Welti, C.V. Ochoa, J.B. Guerrero, High-pressure homogenization of orange juice to inactivate pectinmethylesterase, Innovative Food Sci. Emerg. Technol., 10 (2009) 457–462.
  41. H. Yuan, R. Guan, A.W. Chufo, C. Zhu, D. Zou, Y. Li, Y. Liu, X. Zuo. X. Li, Enhancing methane production of excess sludge and dewatered sludge with combined low frequency CaOultrasonic pretreatment, Bioresour. Technol., 273 (2018) 425–430.
  42. V. Riggio, Thermal, alkali and thermo-alkali pretreatments applied on monospecific microalgal biomass to improve anaerobic biogas production, Desal. Wat. Treat, 127 (2018) 165–170.
  43. W. Fang, P. Zhang, G. Zhang, S. Jin, D. Li, M. Zhang, X. Xu, Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization, Bioresour. Technol., 168 (2014) 167–172.
  44. W. Fang, P. Zhang, R. Shang, J. Ye, Y. Wu, H. Zhang, J. Liu, X. Gou, G. Zeng, S. Zhou, Effect of high pressure homogenization on anaerobic digestion of the sludge pretreated by combined alkaline and high pressure homogenization, Desal. Wat. Treat., 62 (2017) 168–174.
  45. Z. Jiang, B. Fei, Z. Li. Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation, Bioresour. Technol., 214 (2016) 876–880.
  46. Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99 (2008) 4044–4064.
  47. S. Poirier, O. Chapleur, Inhibition of anaerobic digestion by phenol and ammonia: Effect on degradation performances and microbial dynamics, Data Brief, 19 (2018) 2235–2239.
  48. H. Anand, B. Balasundaram, A. Pandit, S. Harrison, The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli, Biochem. Eng. J., 35 (2007) 166–173.
  49. M.T.K. Kubo, P.E. Augusto, M. Cristianini, Effect of high pressure homogenization (HPH) on the physical stability of tomato juice, Food Res. Int., 51 (2013) 170–179.
  50. B. Chen, S. Zeng, H. Zeng, Z. Guo, Y. Zhang, B. Zheng, Properties of lotus seed starch–glycerin monostearin complexes formed by high pressure homogenization, Food Chem., 226 (2017) 119–127.
  51. S. Jin, G. Zhang, P. Zhang, S. Fan, F. Li, High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility, Bioresour. Technol., 181 (2015) 270–274.
  52. Y. Zhang, P. Zhang, J. Guo, W. Ma, L. Xiao, Spectroscopic analysis and biodegradation potential study of dissolved organic matters in sewage sludge treated with high-pressure homogenization, Bioresour. Technol., 135 (2013) 616–621.
  53. I. Zawieja, L. Wolny, Effect of hydrogen peroxide on nitrogen forms in sewage sludge subjected to the anaerobic stabilization, Desal. Wat. Treat., 117 (2018) 301–308.
  54. H. Chi, J. Xue, C. Zhang, H. Chen, L. Li, Y. Qin, High pressure treatment for improving water vapour barrier properties of poly (lactic acid)/Ag nanocomposite films, Polymer, 10 (2018) 1011.
  55. M. Nabi, G. Zhang, P. Zhang, X. Tao, S. Wang, J. Ye, Q. Zhang, M. Zubair, S. Bao, Y. Wu, Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production, Bioresour. Technol., 286 (2019) 121378.
  56. L. Zhou, Y. Guan, J. Bi, X. Liu, J. Yi, Q. Chen, X. Wu, M. Zhou, Change of the rheological properties of mango juice by high pressure homogenization, LWT Food Sci. Technol., 82 (2017) 121–130.
  57. E. Betoret, N. Betoret, J. Carbonell, P. Fito, Effects of pressure homogenization on particle size and the functional properties of citrus juices, J. Food Eng., 92 (2009) 18–23.
  58. X. Song, C. Zhou, F. Fu, Z. Chen, Q. Wu, Effect of high-pressure homogenization on particle size and film properties of soy protein isolate, Ind. Crops Prod., 43 (2013) 538–544.
  59. X.Y. Li, S. Yang, Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge, Water Res., 41 (2007) 1022–1030.
  60. B. Liao, D. Allen, I. Droppo, G. Leppard, S. Liss, Surface properties of sludge and their role in bioflocculation and settleability, Water Res., 35 (2001) 339–350.
  61. M.P. Wagh, P.D. Nemade, Biogas generation from distillery spent wash by using an OPUR western biotechnology process: a case study, Desal. Wat. Treat., 118 (2018) 241–248.
  62. D. Yadav, L. Barbora, D. Bora, S. Mitra, L. Rangan, P. Mahanta, An assessment of duckweed as a potential lignocellulosic feedstock for biogas production, Int. Biodeterior. Biodegrad., 119 (2017) 253–259.
  63. J. Jiménez, Y. Guardia-Puebla, O.R. Romero, M.E. Cisneros, G. Guerra, J.M. Morgan, A. Noyola, Methanogenic activity optimization using the response surface methodology, during the anaerobic co-digestion of agriculture and industrial wastes, Microbial community diversity, Biomass Bioenergy, 71 (2014) 84–97.
  64. P. Mullai, S. Vishali, P. Sabarathinam, Biogas production kinetics in an anaerobic multiphase hybrid reactor treating antibiotic industry wastewater, Desal. Wat. Treat., 122 (2018) 247–253.
  65. J. Wang, Y. Li, Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion, Appl. Energy, 183 (2016) 1123–1132.
  66. A.K. Wahidunnabi, C. Eskicioglu, High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge, Water Res., 66 (2014) 430–446.
  67. L. Alibardi, R. Cossu, Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products, Waste Manage., 47 (2016) 69–77.
  68. C. Pan, S. Zhang, Y. Fan, H. Hou, Bioconversion of corncob to hydrogen using anaerobic mixed microflora, Int. J. Hydrogen Energy, 35 (2010) 2663–2669.
  69. D. Shallom, Y. Shoham, Microbial hemicellulases, Curr. Opin. Microbiol., 6 (2003) 219–228.
  70. D.H. Kim, D.Y. Lee, M.S. Kim, Enhanced biohydrogen production from tofu residue by acid/base pretreatment and sewage sludge addition, Int. J. Hydrogen Energy, 36 (2011) 13922–13927.
  71. G. Kumar, P. Sivagurunathan, B. Sen, A. Mudhoo, G.V. Davila, G. Wang, S.H. Kim, Research and development perspectives of lignocellulose-based biohydrogen production, Int. Biodeterior. Biodegrad., 119 (2017) 225–238.
  72. J. Wang, Y. Yin, Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures, Int. J. Hydrogen Energy, 42 (2017) 4804–4823.
  73. S.V. Mohan, G. Mohanakrishna, P. Chiranjeevi, D. Peri, P. Sarma, Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented-distillery wastewater: evaluation of long term performance, Bioresour. Technol., 101 (2010) 3363–3370.
  74. S. Srikanth, S.V. Mohan, M.P. Devi, M.L. Babu, P. Sarma, Effluents with soluble metabolites generated from acidogenic and methanogenic processes as substrate for additional hydrogen production through photo-biological process, Int. J. Hydrogen Energy, 34 (2009) 1771–1779.
  75. Y. Yin, J. Wang, Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum, Bioresour. Technol., 200 (2016) 217–222.
  76. G. Li, P. Zhang, Y. Wang, Y. Sheng, X. Lv, J. Yin, Enhancing biological denitrification with adding sludge liquor of hydrolytic acidification pretreated by high-pressure homogenization, Int. Biodeterior. Biodegrad., 113 (2016) 222–227.
  77. G. Chen, G. Wu, B. Alriksson, W. Wang, F.F. Hong, L.J. Jönsson, Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets, Polymers, 9 (2017) 458.
  78. L. Guo, X.M. Li, X. Bo, Q. Yang, G.M. Zeng, D.X. Liao, J.J. Liu, Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge, Bioresour. Technol., 99 (2008) 3651–3658.
  79. J.Y. Park, M. Kang, J.S. Kim, J.-P. Lee, W.I. Choi, J.S. Lee, Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion, Bioresour. Technol., 123 (2012) 707–712.
  80. L. Filiciotto, A.M. Balu, J.C. Van der Waal, R. Luque, Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins, Catal. Today, 302 (2018) 2–15.
  81. S.C. Cho, W.Y. Choi, S.H. Oh, C.G. Lee, Y.C. Seo, J.S. Kim, C.H. Song, G.V. Kim, S.Y. Lee, D.H. Kang, H.Y. Lee, Enhancement of lipid extraction from marine microalga, scenedesmus associated with high-pressure homogenization process, J. Biomed. Biotechnol., 2012 (2012) 6p, Available at: http://dx.doi. org/10.1155/2012/359432.
  82. P. Seesuriyachan, A. Kawee-ai, T. Chaiyaso, Green and chemicalfree process of enzymatic xylooligosaccharide production from corncob: enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment, Bioresour. Technol., 241 (2017) 537–544.
  83. O. Turhan, A. Isci, B. Mert, O. Sakiyan, S. Donmez, Optimization of ethanol production from microfluidized wheat straw by response surface methodology, Prep. Biochem. Biotechnol., 45 (2015) 785–795.
  84. A.R. Ferreira, A.B. Figueiredo, D.V. Evtuguin, J.A. Saraiva, High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose, Green Chem., 13 (2011) 2764–2767.
  85. C. Froud, R. Weber, W. Schmitt, Collective Experience of the Crown Sludge Disintegration System for Carbon Release for Improved Biological Treatment-Final Results, Proceedings of the 10th European Biosolid and Biowaste Conference, Wakefield, UK, 2005.
  86. T.I. Onyeche, Economic Benefits of Low Pressure Sludge Homogenization for Wastewater Treatment Plants, IWA Specialist Conferences, Moving Forward Wastewater Biosolids Sustainability, Moncton, New Brunswick, Canada, 2007.
  87. P. Chen, Q. Xie, M. Addy, W. Zhou, Y. Liu, Y. Wang, Y. Cheng, K. Li, R. Ruan, Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production, Bioresour. Technol., 215 (2016) 163–172.
  88. D. Mihoubi. Mechanical and thermal dewatering of residual sludge, Desalination, 167 (2004) 135–139.
  89. I.W. Nah, Y.W. Kang, K.Y. Hwang,W.K. Song, Mechanical pretreatment of waste activated sludge for anaerobic digestion process, Water Res., 34 (2000) 2362–2368.
  90. M. Barjenbruch, O. Kopplow, Enzymatic, mechanical and thermal pre-treatment of surplus sludge, Adv. Environ. Res., 7 (2003) 715–720.
  91. S.P. Heffernan, A.L. Kelly, D.M. Mulvihill, U. Lambrich, H.P. Schuchmann, Efficiency of a range of homogenisation technologies in the emulsification and stabilization of cream liqueurs, Innovative Food Sci. Emerg. Technol., 12 (2011) 628–634.
  92. F.A. Shah, Q. Mahmood, N. Rashid, A. Pervez, I.A. Raja, M.M. Shah. Co-digestion, pretreatment and digester design for enhanced methanogenesis, Renewable Sustainable Energy Rev., 42 (2015) 627–642.