References

  1. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Phenol, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2008.
  2. W.Y. Duan, F.P. Meng, H.W. Cui, Y.F. Lin, G.S. Wang, J.Y. Wu, Ecotoxicity of phenol and cresols to aquatic organisms: a review, Ecotoxicol. Environ. Saf., 157 (2018) 441–456.
  3. C. Postigo, D.E. Martinez, S. Grondona, K.S.B. Miglioranza, Groundwater Pollution: Sources, Mechanisms and Prevention, D.A. Dellasala, M.I. Goldstein, Eds., Encyclopedia of the Anthropocene, Elsevier, Oxford, 2018, pp. 87–96.
  4. T. Xiong, X.Z. Yuan, H. Wang, Z.B. Wu, L.B. Jiang, L.J. Leng, K.F. Xi, X.Y. Cao, G.M. Zeng, Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite, Chem. Eng. J., 366 (2019) 83–91.
  5. T. Xiong, X.Z. Yuan, X.H. Chen, Z.B. Wu, H. Wang, L.J. Leng, H. Wang, L.B. Jiang, G.M. Zeng, Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite, Appl. Surf. Sci., 427 (2018) 1107–1117.
  6. H. Wang, Z.T. Zeng, P. Xu, L.S. Li, G.M. Zeng, R. Xiao, Z.Y. Tang, D.L. Huang, L. Tang, C. Lai, D. Jiang, Y. Liu, H. Yi, L. Qin, S.J. Ye, X.Y. Ren, W.W. Tang, Recent progress in covalent organic framework thin films: fabrications, applications and perspectives, Chem. Soc. Rev., 48 (2019) 488–516.
  7. S.S. Sable, K.J. Shah, P.-C. Chiang, S.-L. Lo, Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs), J. Taiwan Inst. Chem. Eng., 91 (2018) 434–440.
  8. D. Gamaralalage, O. Sawai, T. Nunoura, Degradation behavior of palm oil mill effluent in Fenton oxidation, J. Hazard. Mater., 364 (2019) 791–799.
  9. E. Aneggi, A. Trovarelli, D. Goi, Degradation of phenol in wastewaters via heterogeneous Fenton-like Ag/CeO2 catalyst, J. Environ. Chem. Eng., 5 (2017) 1159–1165.
  10. X.J. Hou, X.P. Huang, M.L. Li, Y.S. Zhang, S. Yuan, Z.H. Ai, J.C. Zhao, L.Z. Zhang, Fenton oxidation of organic contaminants with aquifer sediment activated by ascorbic acid, Chem. Eng. J., 348 (2018) 255–262.
  11. R. Baciocchi, L. D’Aprile, I. Innocenti, F. Massetti, I. Verginelli, Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation, J. Cleaner Prod., 77 (2014) 47–55.
  12. Y.Y. Gong, J.C. Tang, D.Y. Zhao, Application of iron sulfide particles for groundwater and soil remediation: a review, Water Res., 89 (2016) 309–320.
  13. I. Innocenti, I. Verginelli, F. Massetti, D. Piscitelli, R. Gavasci, R. Baciocchi, Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process, Sci. Total Environ., 485–486 (2014) 726–738.
  14. D. Piscitelli, D. Zingaretti, I. Verginelli, R. Gavasci, R. Baciocchi, The fate of MtBE during Fenton-like treatments through laboratory scale column tests. J. Contam. Hydrol., 183 (2015) 99–108.
  15. Y.D. Liu, A. Zhou, Y.Q. Gan, X.Q. Li, Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene, J. Hazard. Mater., 308 (2016) 187–191.
  16. R. Nazari, L. Rajić, A. Ciblak, S. Hernández, I.E. Mousa, W. Zhou, D. Bhattacharyya, A.N. Alshawabkeh, Immobilized palladiumcatalyzed electro-Fenton’s degradation of chlorobenzene in groundwater, Chemosphere, 216 (2019) 556–563.
  17. B. Ranc, P. Faure, V. Croze, M.O. Simonnot, Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard. Mater., 312 (2016) 280–297.
  18. R. Ameta, A.K. Chohadia, A. Jain, P.B. Punjabi, Fenton and Photo-Fenton Processes, Chapter 3, S.C. Ameta, R. Ameta, Advanced Oxidation Processes for Waste Water Treatment, Academic Press, 2018, pp. 49–87.
  19. L.Y. Huang, G.J. Su, A.Q. Zhang, Y. Shi, C.B. Xia, H.J. Lu, L.W. Li, S. Liu, M.H. Zheng, Degradation of polychlorinated biphenyls using mesoporous iron-based spinels, J. Hazard. Mater., 261 (2013) 451–462.
  20. S.H. Liang, C.M. Kao, Y.C. Kuo, K.F. Chen, B.M. Yang, In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system, Water Res., 45 (2011) 2496–2506.
  21. W.O. Medjor, O.N. Namessan, E.A. Medjor, Optimization, kinetics, physicochemical and ecotoxicity studies of Fenton oxidative remediation of hydrocarbons contaminated groundwater, Egypt. J. Pet., 27 (2018) 227–233.
  22. B. Song, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, Z.F. Liu, Y. Zhang, C. Zhang, M. Cheng, Y. Liu, S.J. Ye, H. Yi, X.Y. Ren, Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals, Environ. Int., 105 (2017) 43–55.
  23. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review, Chemosphere, 151 (2016) 178–188.
  24. S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
  25. C.G. Liu, B. Wu, X. Chen, Sulfate radical-based oxidation for sludge treatment: a review, Chem. Eng. J., 335 (2018) 865–875.
  26. X.Y. Xu, G. Pliego, A.L. Garcia-Costa, J.A. Zazo, S.M. Liu, J.A. Casas, J.J. Rodriguez, Cyclohexanoic acid breakdown by two-step persulfate and heterogeneous Fenton-like oxidation, Appl. Catal., B, 232 (2018) 429–435.
  27. Y.Y. Zhou, Y.J. Xiang, Y.Z. He, Y. Yang, J.C. Zhang, L. Luo, H. Peng, C.H. Dai, F. Zhu, L. Tang, Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds, J. Hazard. Mater., 359 (2018) 396–407.
  28. G.-D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.-M. Zhou, Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics, J. Hazard. Mater., 227–228 (2012) 394–401.
  29. H.V. Lutze, S. Bircher, I. Rapp, N. Kerlin, R. Bakkour, M. Geisler, C. von Sonntag, T.C. Schmidt, Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter, Environ. Sci. Technol., 49 (2015) 1673–1680.
  30. Y.F. Ji, C.X. Dong, D.Y. Kong, J.H. Lu, Q.S. Zhou, Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides, Chem. Eng. J., 263 (2015) 45–54.
  31. P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems, Sci. Total Environ., 571 (2016) 643–657.
  32. A. Tsitonaki, B. Petri, M. Crimi, H. MosbÆK, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Env. Sci. Technol., 40 (2010) 55–91.
  33. X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion, Sep. Purif. Technol., 72 (2010) 105–111.
  34. K.F. Chen, C.M. Kao, L.C. Wu, R.Y. Surampalli, S.H. Liang, Methyl tert-butyl ether (MTBE) degradation by ferrous ionactivated persulfate oxidation: feasibility and kinetics studies, Water Environ. Res., 81 (2009) 687–694.
  35. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemosphere, 49 (2002) 413–420.
  36. NIEA (National Institute of Environmental Analysis), Methods for Groundwater Sampling and Hydrological Tests, NIEA W521.52A, Taiwan Environmental Protection Administration, Taiwan, 2005.
  37. A.L. Teel, F.C. Elloy, R.J. Watts, Persulfate activation during exertion of total oxidant demand, Chemosphere, 158 (2016) 184–192.
  38. M.A. Urynowicz, B. Balu, U. Udayasankar, Kinetics of natural oxidant demand by permanganate in aquifer solids, J. Contam. Hydrol., 96 (2008) 187–194.
  39. J.K. Wang, Z.H. Jiang, Y.J. Wang, Q.X. Xia, Z.P. Yao, Design of a novel immobilized solid acid coating and its application in Fenton-like oxidation of phenol, Appl. Surf. Sci., 409 (2017) 358–366.
  40. H. Wang, M.M. Jing, Y. Wu, W.L. Chen, Y. Ran, Effective degradation of phenol via Fenton reaction over CuNiFe layered double hydroxides, J. Hazard. Mater., 353 (2018) 53–61.
  41. J.L. Xu, L. Li, Y. Guo, M.J. Zhang, T.L. Huang, Novel iron bound to soil organic matter catalyzes H2O2 to oxidize long-chain alkanes effectively in soil, Chem. Eng. J., 339 (2018) 566–574.
  42. N. Inchaurrondo, C.P. Ramos, G. Žerjav, J. Font, A. Pintar, P. Haure, Modified diatomites for Fenton-like oxidation of phenol, Microporous Mesoporous Mater., 239 (2017) 396–408.
  43. L.W. Chen, X.X. Hu, Y. Yang, C.L. Jiang, C. Bian, C. Liu, M.Y. Zhang, T.M. Cai, Degradation of atrazine and structurally related s-triazine herbicides in soils by ferrous-activated persulfate: kinetics, mechanisms and soil-types effects, Chem. Eng. J., 351 (2018) 523–531.
  44. H. Zhong, Y.L. Tian, Q. Yang, M.L. Brusseau, L. Yang, G.M. Zeng, Degradation of landfill leachate compounds by persulfate for groundwater remediation, Chem. Eng. J., 307 (2017) 399–407.