References
- Agency for Toxic Substances and Disease Registry (ATSDR),
Toxicological Profile for Phenol, U.S. Department of Health
and Human Services, Public Health Service, Atlanta, GA,
2008.
- W.Y. Duan, F.P. Meng, H.W. Cui, Y.F. Lin, G.S. Wang, J.Y. Wu,
Ecotoxicity of phenol and cresols to aquatic organisms: a
review, Ecotoxicol. Environ. Saf., 157 (2018) 441–456.
- C. Postigo, D.E. Martinez, S. Grondona, K.S.B. Miglioranza,
Groundwater Pollution: Sources, Mechanisms and Prevention,
D.A. Dellasala, M.I. Goldstein, Eds., Encyclopedia of the
Anthropocene, Elsevier, Oxford, 2018, pp. 87–96.
- T. Xiong, X.Z. Yuan, H. Wang, Z.B. Wu, L.B. Jiang, L.J. Leng,
K.F. Xi, X.Y. Cao, G.M. Zeng, Highly efficient removal of
diclofenac sodium from medical wastewater by Mg/Al layered
double hydroxide-poly(m-phenylenediamine) composite, Chem.
Eng. J., 366 (2019) 83–91.
- T. Xiong, X.Z. Yuan, X.H. Chen, Z.B. Wu, H. Wang, L.J. Leng,
H. Wang, L.B. Jiang, G.M. Zeng, Insight into highly efficient
removal of cadmium and methylene blue by eco-friendly
magnesium silicate-hydrothermal carbon composite, Appl. Surf.
Sci., 427 (2018) 1107–1117.
- H. Wang, Z.T. Zeng, P. Xu, L.S. Li, G.M. Zeng, R. Xiao,
Z.Y. Tang, D.L. Huang, L. Tang, C. Lai, D. Jiang, Y. Liu, H. Yi,
L. Qin, S.J. Ye, X.Y. Ren, W.W. Tang, Recent progress in covalent
organic framework thin films: fabrications, applications and
perspectives, Chem. Soc. Rev., 48 (2019) 488–516.
- S.S. Sable, K.J. Shah, P.-C. Chiang, S.-L. Lo, Catalytic oxidative
degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs), J. Taiwan Inst.
Chem. Eng., 91 (2018) 434–440.
- D. Gamaralalage, O. Sawai, T. Nunoura, Degradation behavior
of palm oil mill effluent in Fenton oxidation, J. Hazard. Mater.,
364 (2019) 791–799.
- E. Aneggi, A. Trovarelli, D. Goi, Degradation of phenol in
wastewaters via heterogeneous Fenton-like Ag/CeO2 catalyst,
J. Environ. Chem. Eng., 5 (2017) 1159–1165.
- X.J. Hou, X.P. Huang, M.L. Li, Y.S. Zhang, S. Yuan, Z.H. Ai,
J.C. Zhao, L.Z. Zhang, Fenton oxidation of organic contaminants
with aquifer sediment activated by ascorbic acid, Chem.
Eng. J., 348 (2018) 255–262.
- R. Baciocchi, L. D’Aprile, I. Innocenti, F. Massetti, I. Verginelli,
Development of technical guidelines for the application of
in-situ chemical oxidation to groundwater remediation,
J. Cleaner Prod., 77 (2014) 47–55.
- Y.Y. Gong, J.C. Tang, D.Y. Zhao, Application of iron sulfide
particles for groundwater and soil remediation: a review, Water
Res., 89 (2016) 309–320.
- I. Innocenti, I. Verginelli, F. Massetti, D. Piscitelli, R. Gavasci,
R. Baciocchi, Pilot-scale ISCO treatment of a MtBE contaminated
site using a Fenton-like process, Sci. Total Environ., 485–486
(2014) 726–738.
- D. Piscitelli, D. Zingaretti, I. Verginelli, R. Gavasci, R. Baciocchi,
The fate of MtBE during Fenton-like treatments through laboratory
scale column tests. J. Contam. Hydrol., 183 (2015) 99–108.
- Y.D. Liu, A. Zhou, Y.Q. Gan, X.Q. Li, Effects of inorganic anions
on carbon isotope fractionation during Fenton-like degradation
of trichloroethene, J. Hazard. Mater., 308 (2016) 187–191.
- R. Nazari, L. Rajić, A. Ciblak, S. Hernández, I.E. Mousa, W. Zhou,
D. Bhattacharyya, A.N. Alshawabkeh, Immobilized palladiumcatalyzed
electro-Fenton’s degradation of chlorobenzene in
groundwater, Chemosphere, 216 (2019) 556–563.
- B. Ranc, P. Faure, V. Croze, M.O. Simonnot, Selection of oxidant
doses for in situ chemical oxidation of soils contaminated by
polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard.
Mater., 312 (2016) 280–297.
- R. Ameta, A.K. Chohadia, A. Jain, P.B. Punjabi, Fenton and
Photo-Fenton Processes, Chapter 3, S.C. Ameta, R. Ameta,
Advanced Oxidation Processes for Waste Water Treatment,
Academic Press, 2018, pp. 49–87.
- L.Y. Huang, G.J. Su, A.Q. Zhang, Y. Shi, C.B. Xia, H.J. Lu, L.W. Li,
S. Liu, M.H. Zheng, Degradation of polychlorinated biphenyls
using mesoporous iron-based spinels, J. Hazard. Mater.,
261 (2013) 451–462.
- S.H. Liang, C.M. Kao, Y.C. Kuo, K.F. Chen, B.M. Yang, In situ
oxidation of petroleum-hydrocarbon contaminated groundwater
using passive ISCO system, Water Res., 45 (2011)
2496–2506.
- W.O. Medjor, O.N. Namessan, E.A. Medjor, Optimization,
kinetics, physicochemical and ecotoxicity studies of Fenton
oxidative remediation of hydrocarbons contaminated groundwater,
Egypt. J. Pet., 27 (2018) 227–233.
- B. Song, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, Z.F. Liu, Y. Zhang,
C. Zhang, M. Cheng, Y. Liu, S.J. Ye, H. Yi, X.Y. Ren, Evaluation
methods for assessing effectiveness of in situ remediation of
soil and sediment contaminated with organic pollutants and
heavy metals, Environ. Int., 105 (2017) 43–55.
- L.W. Matzek, K.E. Carter, Activated persulfate for organic
chemical degradation: a review, Chemosphere, 151 (2016)
178–188.
- S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík,
D.D. Dionysiou, Chemistry of persulfates in water and wastewater
treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
- C.G. Liu, B. Wu, X. Chen, Sulfate radical-based oxidation for
sludge treatment: a review, Chem. Eng. J., 335 (2018) 865–875.
- X.Y. Xu, G. Pliego, A.L. Garcia-Costa, J.A. Zazo, S.M. Liu,
J.A. Casas, J.J. Rodriguez, Cyclohexanoic acid breakdown by
two-step persulfate and heterogeneous Fenton-like oxidation,
Appl. Catal., B, 232 (2018) 429–435.
- Y.Y. Zhou, Y.J. Xiang, Y.Z. He, Y. Yang, J.C. Zhang, L. Luo,
H. Peng, C.H. Dai, F. Zhu, L. Tang, Applications and factors
influencing of the persulfate-based advanced oxidation processes
for the remediation of groundwater and soil contaminated
with organic compounds, J. Hazard. Mater., 359 (2018) 396–407.
- G.-D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.-M. Zhou,
Sulfate radical-based degradation of polychlorinated biphenyls:
effects of chloride ion and reaction kinetics, J. Hazard. Mater.,
227–228 (2012) 394–401.
- H.V. Lutze, S. Bircher, I. Rapp, N. Kerlin, R. Bakkour, M. Geisler,
C. von Sonntag, T.C. Schmidt, Degradation of chlorotriazine
pesticides by sulfate radicals and the influence of organic
matter, Environ. Sci. Technol., 49 (2015) 1673–1680.
- Y.F. Ji, C.X. Dong, D.Y. Kong, J.H. Lu, Q.S. Zhou, Heat-activated
persulfate oxidation of atrazine: implications for remediation
of groundwater contaminated by herbicides, Chem. Eng. J.,
263 (2015) 45–54.
- P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle
and applications of peroxide and persulfate treatments in
wastewater systems, Sci. Total Environ., 571 (2016) 643–657.
- A. Tsitonaki, B. Petri, M. Crimi, H. MosbÆK, R.L. Siegrist,
P.L. Bjerg, In situ chemical oxidation of contaminated soil and
groundwater using persulfate: a review, Crit. Rev. Env. Sci.
Technol., 40 (2010) 55–91.
- X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous
solutions by persulfate with ferrous ion, Sep. Purif. Technol.,
72 (2010) 105–111.
- K.F. Chen, C.M. Kao, L.C. Wu, R.Y. Surampalli, S.H. Liang,
Methyl tert-butyl ether (MTBE) degradation by ferrous ionactivated
persulfate oxidation: feasibility and kinetics studies,
Water Environ. Res., 81 (2009) 687–694.
- K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted
persulfate oxidation of methyl tert-butyl ether (MTBE),
Chemosphere, 49 (2002) 413–420.
- NIEA (National Institute of Environmental Analysis), Methods
for Groundwater Sampling and Hydrological Tests, NIEA
W521.52A, Taiwan Environmental Protection Administration,
Taiwan, 2005.
- A.L. Teel, F.C. Elloy, R.J. Watts, Persulfate activation during
exertion of total oxidant demand, Chemosphere, 158 (2016)
184–192.
- M.A. Urynowicz, B. Balu, U. Udayasankar, Kinetics of natural
oxidant demand by permanganate in aquifer solids, J. Contam.
Hydrol., 96 (2008) 187–194.
- J.K. Wang, Z.H. Jiang, Y.J. Wang, Q.X. Xia, Z.P. Yao, Design of
a novel immobilized solid acid coating and its application in
Fenton-like oxidation of phenol, Appl. Surf. Sci., 409 (2017)
358–366.
- H. Wang, M.M. Jing, Y. Wu, W.L. Chen, Y. Ran, Effective
degradation of phenol via Fenton reaction over CuNiFe layered
double hydroxides, J. Hazard. Mater., 353 (2018) 53–61.
- J.L. Xu, L. Li, Y. Guo, M.J. Zhang, T.L. Huang, Novel iron bound
to soil organic matter catalyzes H2O2 to oxidize long-chain
alkanes effectively in soil, Chem. Eng. J., 339 (2018) 566–574.
- N. Inchaurrondo, C.P. Ramos, G. Žerjav, J. Font, A. Pintar,
P. Haure, Modified diatomites for Fenton-like oxidation of
phenol, Microporous Mesoporous Mater., 239 (2017) 396–408.
- L.W. Chen, X.X. Hu, Y. Yang, C.L. Jiang, C. Bian, C. Liu,
M.Y. Zhang, T.M. Cai, Degradation of atrazine and structurally
related s-triazine herbicides in soils by ferrous-activated
persulfate: kinetics, mechanisms and soil-types effects, Chem.
Eng. J., 351 (2018) 523–531.
- H. Zhong, Y.L. Tian, Q. Yang, M.L. Brusseau, L. Yang, G.M. Zeng,
Degradation of landfill leachate compounds by persulfate for
groundwater remediation, Chem. Eng. J., 307 (2017) 399–407.