References

  1. A. Souza, P. Andrade, F. Andreote, et al., The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity, J. Sci. Rep., 7 (2017) 14646.
  2. R. Juárez, L. Dorry, R. Bello Mendoza, J. Sánchez, Use of spent substrate after Pleurotus pulmonarius cultivation for the treatment of chlorothalonil containing wastewater, J. Environ. Manage., 92 (2010) 948–952.
  3. X.H. Xu, X.M. Liu, L. Zhang, et al., Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community, J. Hazard. Mater., 351 (2018) 240.
  4. X. Hu, Y. Wang, X. Su, et al., Acute response of soil denitrification and N2O emissions to chlorothalonil: a comprehensive molecular mechanism, Sci. Total Environ., 636 (2018) 1408–1415.
  5. Y. Yi, Daconil induced sister-chromatid exchanges, Bull. Hunan Med. Coll., 10 (1985) 55–56.
  6. D.J. Chauhan, G. Bhattacharya, X-ray crystallographic studies of fungicide chlorothalonil, Adv. Phys. Theor. Appl., 19 (2013) 2224–719X.
  7. A.M. Mozzachio, J.A. Rusiecki, J.A. Hoppin, et al., Chlorothalonil exposure and cancer incidence among pesticide applicator participants in the agricultural health study, J. Environ. Res., 108 (2008) 400–403.
  8. X.M. Yuan, The determination of chlorothalonil in water with GC-MS. Agric. Technol. Service, 2015-05.
  9. H. Huan, X. Dan, H. Fengxia, et al., Dissolved oxygen inhibits the promotion of chlorothalonil photodegradation mediated by humic acid, J. Photochem. Photobiol., A, 360 (2018) 289–297.
  10. S.B.J. Da, M.T.F. De, D.G. Fga, et al., Induction of oxidative stress by chlorothalonil in the estuarine polychaete Laeonereis acuta, J. Aquat. Toxicol., 196 (2018) 1–8.
  11. Q.C. Shen, K.J. Jiang, H.X. Wu, Study on removal rate of three fungicides by different washing methods, J. Modern Agrochem., 9 (2010) 31–33.
  12. H.Y. Jin, D.Y. Zhang, W.G. Li, Chlorothalonil removal by combination of enhanced coagulation and powdered activated carbon, J. Chem. Adhesion, 35 (2018) 47–50 + 66.
  13. Y.Q. Tan, Study of Chlorothalonil Photodegradation in Aqueous Solution and on the Surface of Pepper, Anhui Agricultural University, 2013.
  14. X.P. Zhao, Mechanism of Phosphotungstic Acid Load on Mesoporous Materials and Its Catalytic Oxidation Desulfurization Performance, Master Thesis of Wuhan University of Technology, 2018.
  15. W. Ma, L. Hui, X. Qian, et al., Au nanoparticles doped Co3O4-CoFe2O4@SiO2 as catalyst for visible-light-driven water oxidation, New J. Chem., 2018.
  16. J.M. Chen, B. Pang, H.H. Gai, Application research progress of heteropoly acid catalyst, J. Guangzhou Chem. Ind., 39 (2018) 7–8.
  17. N. Bayal, R. Singh, Nanostructured silica–titania hybrid using dendritic fibrous nanosilica as a photocatalyst, J. Chemsuschem, 10 (2017) 2182.
  18. G.Q. Chen, D.C. Li, R.F. Li, Research on synthesis of mesoporous materials, J. Shanxi Chemical Industry, 26 (2006) 68–71.
  19. M. Shaban, M.R. Abukhadra, A. Hamd, Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal, J. Clean Technol. Environ. Policy, 20 (2017) 1–16.
  20. T.C. Liu, J.W. Huang, T.L. Wang, G.Y. Tang, L.J. Jia, B.T. Wang, H.B. Wang, Preparation and characterization of potassium phosphotungstate photocatalytic, J. Environ. Eng., 10 (2016) 127–130.
  21. T.L. Wang, T.C. Liu, B. Li, W. Tan, M. Yang, H.B. Wang, SPE-GC detection of chlorothalonil residue, J. Environ. Eng., 16 (2014) 2129–2132.
  22. Y.X. Cao, Y. Shen, J.W. Sun, Synthesis and characterization of silicon-based mesoporous materials, J. Hebei Univ. Technol., 2 (2008) 52–61.
  23. P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment, Microporous Mesoporous Mater., 266 (2018) 252–267.
  24. P.K. Kumari, B. Srinivasa Rao, D. Dhana Lakshmi, N.R.S. Paramesh, C. Sumana, N. Lingaiah, Tungstophosphoric acid supported on mesoporouus niobiumoxophosphate: an efficient solid acid catalyst for etherification of 5-hydroxymethylfurfural to 5-ethoxymethylfurfural, Catal. Today, 325 (2019) 53–60.
  25. C.V. Lacerda, A.C.M. Barrios, R.B. Sousa, et al., Influence of the support on the catalytic properties of Keggin type heteropolyacids supported on niobia according to two different methodologies: evaluation of isopropanol dehydration and Friedel–Crafts alkylation reaction. React. Kinetics Mech. Catal., 124 (2018) 1–18.
  26. X.M. Wu, X.J. Le, L.L. Guo, Preparation and photocatalytic properties of template hydrothermal nano-TiO2, Chem. Res. Appl., 24 (2012) 901–905.
  27. Y. Chang, P. Ning, et al., A study of chlorothalonil photocatalytic degradation over, J. Yunnan National. Univ. (Natural Sci. Ed.), 26 (2017) 278–281.
  28. W. Xu, J.W. Zhou, L. Shen, Chlorothalonil and chlorpyrifos removal from drinking water by BARF. CIESC J., 65 (2014) 1429–1435.
  29. X.F. Hu, G.J. He, J.B. Sheng, et al., Study on chlorothalonil removal by coagulation, J. Harbin Univ. Commerce (Natural Sci. Ed.), 28 (2012) 150–152 + 165.
  30. J. Wang, H.C. Liu, J.B. Wang, et al., Removal of chlorothalonil residue in kumquat by soaking and washing, J. Food Res. Dev., 36 (2015) 28–31.
  31. N. Li, J.Z. Zhao, L.F. Jia, et al., Removal of chlorothalonil residue in cabbage treated by ozone solution, J. Beijing Univ. Agric., 29 (2014) 38–41.
  32. Y.H. Xu, Study on Photocatalytic Degradation of Organophosphorus Pesticides with TiO2 Nanometer powder, D. Guangdong: South China University of Technology, 2000.