References
- A. Souza, P. Andrade, F. Andreote, et al., The depleted
mineralization of the fungicide chlorothalonil derived from loss
in soil microbial diversity, J. Sci. Rep., 7 (2017) 14646.
- R. Juárez, L. Dorry, R. Bello Mendoza, J. Sánchez, Use of
spent substrate after Pleurotus pulmonarius cultivation for the
treatment of chlorothalonil containing wastewater, J. Environ.
Manage., 92 (2010) 948–952.
- X.H. Xu, X.M. Liu, L. Zhang, et al., Bioaugmentation of
chlorothalonil-contaminated soil with hydrolytically or reductively
dehalogenating strain and its effect on soil microbial
community, J. Hazard. Mater., 351 (2018) 240.
- X. Hu, Y. Wang, X. Su, et al., Acute response of soil denitrification
and N2O emissions to chlorothalonil: a comprehensive molecular
mechanism, Sci. Total Environ., 636 (2018) 1408–1415.
- Y. Yi, Daconil induced sister-chromatid exchanges, Bull. Hunan
Med. Coll., 10 (1985) 55–56.
- D.J. Chauhan, G. Bhattacharya, X-ray crystallographic studies
of fungicide chlorothalonil, Adv. Phys. Theor. Appl., 19 (2013)
2224–719X.
- A.M. Mozzachio, J.A. Rusiecki, J.A. Hoppin, et al., Chlorothalonil
exposure and cancer incidence among pesticide applicator
participants in the agricultural health study, J. Environ. Res.,
108 (2008) 400–403.
- X.M. Yuan, The determination of chlorothalonil in water
with GC-MS. Agric. Technol. Service, 2015-05.
- H. Huan, X. Dan, H. Fengxia, et al., Dissolved oxygen inhibits
the promotion of chlorothalonil photodegradation mediated
by humic acid, J. Photochem. Photobiol., A, 360 (2018) 289–297.
- S.B.J. Da, M.T.F. De, D.G. Fga, et al., Induction of oxidative
stress by chlorothalonil in the estuarine polychaete Laeonereis
acuta, J. Aquat. Toxicol., 196 (2018) 1–8.
- Q.C. Shen, K.J. Jiang, H.X. Wu, Study on removal rate of three
fungicides by different washing methods, J. Modern Agrochem.,
9 (2010) 31–33.
- H.Y. Jin, D.Y. Zhang, W.G. Li, Chlorothalonil removal by
combination of enhanced coagulation and powdered activated
carbon, J. Chem. Adhesion, 35 (2018) 47–50 + 66.
- Y.Q. Tan, Study of Chlorothalonil Photodegradation in Aqueous
Solution and on the Surface of Pepper, Anhui Agricultural
University, 2013.
- X.P. Zhao, Mechanism of Phosphotungstic Acid Load on
Mesoporous Materials and Its Catalytic Oxidation Desulfurization
Performance, Master Thesis of Wuhan University of
Technology, 2018.
- W. Ma, L. Hui, X. Qian, et al., Au nanoparticles doped Co3O4-CoFe2O4@SiO2 as catalyst for visible-light-driven water
oxidation, New J. Chem., 2018.
- J.M. Chen, B. Pang, H.H. Gai, Application research progress of
heteropoly acid catalyst, J. Guangzhou Chem. Ind., 39 (2018)
7–8.
- N. Bayal, R. Singh, Nanostructured silica–titania hybrid using
dendritic fibrous nanosilica as a photocatalyst, J. Chemsuschem,
10 (2017) 2182.
- G.Q. Chen, D.C. Li, R.F. Li, Research on synthesis of mesoporous
materials, J. Shanxi Chemical Industry, 26 (2006) 68–71.
- M. Shaban, M.R. Abukhadra, A. Hamd, Recycling of glass in
synthesis of MCM-48 mesoporous silica as catalyst support
for Ni2O3 photocatalyst for Congo red dye removal, J. Clean
Technol. Environ. Policy, 20 (2017) 1–16.
- T.C. Liu, J.W. Huang, T.L. Wang, G.Y. Tang, L.J. Jia, B.T. Wang,
H.B. Wang, Preparation and characterization of potassium
phosphotungstate photocatalytic, J. Environ. Eng., 10 (2016)
127–130.
- T.L. Wang, T.C. Liu, B. Li, W. Tan, M. Yang, H.B. Wang, SPE-GC
detection of chlorothalonil residue, J. Environ. Eng., 16 (2014)
2129–2132.
- Y.X. Cao, Y. Shen, J.W. Sun, Synthesis and characterization of
silicon-based mesoporous materials, J. Hebei Univ. Technol.,
2 (2008) 52–61.
- P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials;
emerging designer adsorbents for aqueous pollutants removal and
water treatment, Microporous Mesoporous Mater., 266 (2018)
252–267.
- P.K. Kumari, B. Srinivasa Rao, D. Dhana Lakshmi, N.R.S.
Paramesh, C. Sumana, N. Lingaiah, Tungstophosphoric acid
supported on mesoporouus niobiumoxophosphate: an efficient
solid acid catalyst for etherification of 5-hydroxymethylfurfural
to 5-ethoxymethylfurfural, Catal. Today, 325 (2019) 53–60.
- C.V. Lacerda, A.C.M. Barrios, R.B. Sousa, et al., Influence
of the support on the catalytic properties of Keggin type
heteropolyacids supported on niobia according to two different
methodologies: evaluation of isopropanol dehydration and
Friedel–Crafts alkylation reaction. React. Kinetics Mech. Catal.,
124 (2018) 1–18.
- X.M. Wu, X.J. Le, L.L. Guo, Preparation and photocatalytic
properties of template hydrothermal nano-TiO2, Chem. Res.
Appl., 24 (2012) 901–905.
- Y. Chang, P. Ning, et al., A study of chlorothalonil photocatalytic
degradation over, J. Yunnan National. Univ. (Natural Sci. Ed.),
26 (2017) 278–281.
- W. Xu, J.W. Zhou, L. Shen, Chlorothalonil and chlorpyrifos
removal from drinking water by BARF. CIESC J., 65 (2014)
1429–1435.
- X.F. Hu, G.J. He, J.B. Sheng, et al., Study on chlorothalonil
removal by coagulation, J. Harbin Univ. Commerce (Natural
Sci. Ed.), 28 (2012) 150–152 + 165.
- J. Wang, H.C. Liu, J.B. Wang, et al., Removal of chlorothalonil
residue in kumquat by soaking and washing, J. Food Res. Dev.,
36 (2015) 28–31.
- N. Li, J.Z. Zhao, L.F. Jia, et al., Removal of chlorothalonil residue
in cabbage treated by ozone solution, J. Beijing Univ. Agric.,
29 (2014) 38–41.
- Y.H. Xu, Study on Photocatalytic Degradation of
Organophosphorus Pesticides with TiO2 Nanometer powder,
D. Guangdong: South China University of Technology, 2000.