References
- M.Q. Xue, A. Kendall, Z.M. Xu, J.L.M. Schoenung, Waste
management of printed wiring boards: a life cycle assessment
of the metals recycling chain from liberation through refining,
Environ. Sci. Technol., 49 (2015) 940–947.
- J.Y. Lin, W.Y. Ye, J. Huang, B. Ricard, M.C. Baltaru, B. Greydanus,
S. Balta, J.N. Shen, M. Vlad, A. Sotto, P. Luis, B. Van der
Bruggen, Toward resource recovery from textile wastewater:
dye extraction, water and base/acid regeneration using a
hybrid NF-BMED process, ACS Sustain. Chem. Eng., 3 (2015)
1993–2001.
- T.W. Xu, W.H. Yang, Sulfuric acid recovery from titanium white
(pigment) waste liquor using diffusion dialysis with a new
series of anion exchange membranes-static runs, J. Membr. Sci.,
183 (2001) 193–200.
- The Report on Development of Glyphosate Market, Southern
pesticide, 2018 (in Chinese).
- J.N. Shen, J. Huang, H.M. Ruan, J.D. Wang, B. Van der Bruggen,
Techno-economic analysis of resource recovery of glyphosate
liquor by membrane technology, Desalination, 342 (2014) 118–125.
- P.F. Wang, G.C. Zhang, Y.H. Wu, Diffusion dialysis for
separating acidic HCl/glyphosate liquor, Sep. Purif. Technol.,
141 (2015) 387–393.
- A. Zheleznov, D. WindmOller, S. Korner, K.W. Boddeker,
Dialytic transport of carboxylic acids through an anion
exchange membrane, J. Membr. Sci., 139 (1998) 137–143.
- J.Y. Luo, C.M. Wu, T.W. Xu, Y.H. Wu, Diffusion dialysis-concept,
principle and applications, J. Membr. Sci., 366 (2011) 1–16.
- L. Ge, A.N. Mondal, X.H. Liu, B. Wu, D.G. Yu, Q.H. Li,
J.B. Miao, Q.Q. Ge, T.W. Xu, Advanced charged porous
membranes with ultrahigh selectivity and permeability for acid
recovery, J. Membr. Sci., 536 (2017) 11–18.
- X.C. Lin, E. Shamsaei, B. Kong, J.Z. Liu, Y.X. Hu, T.W. Xu, H.T.
Wang, Porous diffusion dialysis membranes for rapid acid
recovery, J. Membr. Sci., 502 (2016) 76–83.
- F.J. Sun, C.M. Wu, Y.H. Wu, T.W. Xu, Porous BPPO-based
membranes modified by multisilicon copolymer for application
in diffusion dialysis, J. Membr. Sci., 450 (2014) 103–110.
- C.Y. Ba, J. Langer, J. Economy, Chemical modification of P84
copolyimide membranes by polyethylenimine for nanofiltration,
J. Membr. Sci., 327 (2009) 49–58.
- P. Wang, C.M. Wu, M.J. Sun, X. Zhang, Y.H. Wu, Porous P84
co-polyimide anion exchange membranes for diffusion dialysis
application to recover acids, Desal. Wat. Treat., 108 (2018) 40–48.
- N. Meng, W. Zhao, E. Shamsaei, G. Wang, X.K. Zeng,
X.C. Lin, T.W. Xu, H.T. Wang, X.W. Zhang, A low-pressure GO
nanofiltration membrane crosslinked via ethylenediamine,
J. Membr. Sci., 548 (2018) 363–371.
- C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou,
M.Z. Wang, H.-M. Cheng, Self-assembled free-standing
graphite oxide membrane, Adv. Mater., 21 (2009) 3007–3011.
- Z.Q. Jia, W.X. Shi, Tailoring permeation channels of graphene
oxide membranes for precise ion separation, Carbon, 101 (2016)
290–295.
- G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of
reduced graphene oxide as a transparent and flexible electronic
material, Letters, 3 (2008) 270–274.
- M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as
water separation membranes, Environ. Sci. Technol., 47 (2013)
3715–3723.
- W.S. Hung, C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu,
Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with
diamine monomers to prepare composite graphene oxideframework
membranes with varying d-spacing, Chem. Mater.,
26 (2014) 2983–2990.
- J.H. Li, L.F. Li, B.W. Zhang, M. Yu, H.J. Ma, J.Y. Zhang,
C. Zhang, J.G. Li, Synthesis of few-layer reduced graphene
oxide for lithium-ion battery electrode materials, Ind. Eng.
Chem. Res., 53 (2014) 13348–13355.
- Y.Q. Zhan, X.Y. Wan, S.J. He, Q.B. Yang, Y. He, Design of
durable and efficient poly(arylene ether nitrile)/bioinspired
polydopamine coated graphene oxide nanofibrous composite
membrane for anionic dyes separation, Chem. Eng. J., 333 (2018)
132–145.
- S. Kim, J. Hou, Y.Q. Wang, R.W. Ou, G.P. Simon, J.G. Seong,
Y.M. Lee, H.T. Wang, Highly permeable thermally rearranged
polymer composite membranes with a graphene oxide scaffold
for gas separation, J. Mater. Chem. A, 6 (2018) 7668–7674.
- M.Y. Wu, J.Q. Yuan, H. Wu, Y.L. Su, H. Yang, X.D. You,
R.N. Zhang, X.Y. He, N.A. Khan, R. Kasher, Z.Y. Jiang, Ultrathin
nanofiltration membrane with polydopamine-covalent organic
framework interlayer for enhanced permeability and structural
stability, J. Membr. Sci., 576 (2019) 131–141.
- P.Z. Sun, K.L. Wang, J.Q. Wei, M.L. Zhong, D.H. Wu, H.W. Zhu,
Effective recovery of acids from iron-based electrolytes using
graphene oxide membrane filters, J. Mater. Chem. A, 2 (2014)
7734–7737.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii,
Z.S. Zhong, Tour, Improved synthesis of graphene oxide, ACS
Nano, 4 (2010) 4806–4814.
- C.Y. Zhang, S. Xue, G.S. Wang, C.M. Wu, Y.H. Wu, Production
of lactobionic acid by BMED process using porous P84
co-polyimide anion exchange membranes, Sep. Purif. Technol.,
173 (2017) 174–182.
- Y. Li, T.W. Xu, M. Gong, Fundamental studies of a new series
of anion exchange membranes: membranes prepared from
bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO)
and pyridine, J. Membr. Sci., 279 (2006) 200–208.
- W. Li, Y.M. Zhang, J. Huang, X.B. Zhu, Y. Wang, Separation
and recovery of sulfuric acid from acidic vanadium leaching
solution by diffusion dialysis, Sep. Purif. Technol., 96 (2012)
44–49.
- Glyphosate Aqueous Solution (GB 20684–2007), National
Standard of the Peoples Republic of China, 2017.
- D.W. Mangindaan, N.M. Woon, G.M. Shi, T.S. Chung, P84
polyimide membranes modified by a tripodal amine for
enhanced pervaporation dehydration of acetone, Chem. Eng.
Sci., 122 (2015) 14–23.
- K.M. Jeong, Y.H. Li, D.G. Yoo, N.K. Lee, H.G. Lee, S.J. Ando,
C.S. Ha, Effects of crosslinking agents on the physical properties
of polyimide/amino-functionalized graphene oxide hybrid
films, Polym. Int., 67 (2018) 588–597.
- R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim,
Unimpeded permeation of water through helium-leak-tight
graphene-based membranes, Science, 335 (2012) 442–444.
- Y.H. Wu, M.M. Jiang, J. Cao, T.W. Xu, F.L. Mao, Combination
of OH– ions and –OH groups within QPPO/PVA hybrid membranes
for acid recovery, Desal. Wat. Treat., 57 (2016) 21023–21033.
- Y.H. Wu, J.Y. Luo, L.L. Zhao, G.C. Zhang, C.M. Wu, T.W. Xu,
QPPO/PVA anion exchange hybrid membranes from double
crosslinking agents for acid recovery, J. Membr. Sci., 428 (2013)
95–103.
- K. Wang, Y.M. Zhang, J. Huang, T. Liu, J.P. Wang, Recovery
of sulfuric acid from a stone coal acid leaching solution by
diffusion dialysis, Hydrometallurgy, 173 (2017) 9–14.
- R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, I.V. Wu,
A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving
through graphene oxide membranes, Science, 343 (2014)
752–754.
- J.J. Gu, C.M. Wu, Y.H. Wu, J.Y. Luo, T.W. Xu, PVA-based hybrid
membranes from cation exchange multisilicon copolymer for
alkali recovery, Desalination, 304 (2012) 25–32.
- C.M. Wu, J.J. Gu, Y.H. Wu, J.Y. Luo, T.W. Xu, Y.P. Zhang,
Carboxylic acid type PVA-based hybrid membranes for alkali
recovery using diffusion dialysis, Sep. Purif. Technol., 92 (2012)
21–29.
- ER Nightingale Jr, Phenomenological theory of ion salvation.
Effective radii of hydrated ions, J. Phys. Chem., 63 (1959)
1381–1387.
- M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi,
M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura,
S. Noro, T. Yamada, H. Kitagawa, S. Hayami, Graphene oxide
nanosheet with high proton conductivity, J. Am. Chem. Soc.,
135 (2013) 8097–8100.
- G.Q. Rao, C. Lu, F.S. Su, Sorption of divalent metal ions from
aqueous solution by carbon nanotubes: a review, Sep. Purif.
Technol., 58 (2007) 224–231.
- Y.H. Wu, J.J. Gu, C.M. Wu, T.W. Xu, PVA-based cation exchange
hybrid membranes with multifunctional groups prepared from
ternary multisilicon copolymer, Sep. Purif. Technol., 104 (2013)
45–54.
- F.L. Mao, G.Z. Zhang, J.J. Tong, T.W. Xu, Y.H. Wu, Anion
exchange membranes used in diffusion dialysis for acid
recovery from erosive and organic solutions, Sep. Purif.
Technol., 122 (2014) 376–383.
- Y.H. Wu, P.F. Wang, G.C. Zhang, C.M. Wu, Water osmosis
in separating acidic HCl/glyphosate liquor by continuous
diffusion dialysis, Sep. Purif. Technol., 179 (2017) 86–93.