References
- R. Serrano, F.J. López, A. Roig-Navarro, F. Hernández,
Automated sample clean-up and fractionation of chlorpyrifos,
chlorpyrifos-methyl and metabolites in mussels using normalphase
liquid chromatography, J. Chromatogr. A, 778 (1997)
151–160.
- M. Ismail, H.M. Khan, M. Sayed, W.J. Cooper, Advanced
oxidation for the treatment of chlorpyrifos in aqueous solution,
Chemosphere, 93 (2013) 645–651.
- D.M. Whitacre, Reviews of Environmental Contamination and
Toxicology, Vol. 202, Springer, Spain, 2009.
- M.A. Randhawa, F.M. Anjum, A. Ahmed, M.S. Randhawa, Field
incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues
in fresh and processed vegetables, Food Chem., 103 (2007)
1016–1023.
- S. Malato, J. Blanco, J. Cáceres, A.R. Fernández-Alba, A. Agüera,
A. Rodríguez, Photocatalytic treatment of water-soluble
pesticides by photo-Fenton and TiO2 using solar energy, Catal.
Today, 76 (2002) 209–220.
- M. Yadav, N. Srivastva, R.S. Singh, S.N. Upadhyay,
S.K. Dubey, Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor, Bioresour. Technol.,
165 (2014) 265–269.
- R. Saini, P. Kumar, Simultaneous removal of methyl parathion
and chlorpyrifos pesticides from model wastewater using
coagulation/flocculation: central composite design, J. Environ.
Chem. Eng., 4 (2016) 673–680.
- S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco,
W. Gernjak, Decontamination and disinfection of water by
solar photocatalysis: recent overview and trends, Catal. Today,
147 (2009) 1–59.
- J.G. McEvoy, Z.S. Zhang, Synthesis and characterization of
Ag/AgBr–activated carbon composites for visible light induced
photocatalytic detoxification and disinfection, J. Photochem.
Photobiol., A, 321 (2016) 161–170.
- A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-
Filho, A. Machulek Jr., C.A.O. Nascimento, Advanced oxidation
processes and their application in the petroleum industry:
a review, Braz. J. Pet. Gas, 2 (2008) 122–142.
- C.-Y. Wang, X. Zhang, X.-N. Song, W.-K. Wang, H.-Q. Yu, Novel
Bi12O15Cl6 photocatalyst for the degradation of bisphenol A
under visible-light irradiation, ACS Appl. Mater. Interfaces,
8 (2016) 5320–5326.
- B. Paul, A. Locke, W.N. Martens, R.L. Frost, Decoration of titania
nanofibres with anatase nanoparticles as efficient photocatalysts
for decomposing pesticides and phenols, J. Colloid Interface
Sci., 386 (2012) 66–72.
- Y.J. Li, L.M. Yu, N. Li, W.F. Yan, X.T. Li, Heterostructures of
Ag3PO4/TiO2 mesoporous spheres with highly efficient visible
light photocatalytic activity, J. Colloid Interface Sci., 450 (2015)
246–253.
- X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An, Y.H. Wang,
Preparation of polyaniline-modified TiO2 nanoparticles and
their photocatalytic activity under visible light illumination,
Appl. Catal., B, 81 (2008) 267–273.
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visiblelight
photocatalysis in nitrogen-doped titanium oxides, Science,
293 (2001) 269–271.
- C.K. Cheng, M.R. Derahman, M.R. Khan, Evaluation of the
photocatalytic degradation of pre-treated palm oil mill effluent
(POME) over Pt-loaded titania, J. Environ. Chem. Eng., 3 (2015)
261–270.
- P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei,
M.-H. Whangbo, Ag@AgCl: a highly efficient and stable
photocatalyst active under visible light, Angew. Chem. Int. Ed.,
47 (2008) 7931–7933.
- K. Fuku, R. Hayashi, S. Takakura, T. Kamegawa, K. Mori,
H. Yamashita, The synthesis of size- and color-controlled silver
nanoparticles by using microwave heating and their enhanced
catalytic activity by localized surface plasmon resonance,
Angew. Chem., 125 (2013) 7594–7598.
- P. Wang, B.B. Huang, Q.Q. Zhang, X.Y. Zhang, X.Y. Qin, Y. Dai,
J. Zhan, J.X. Yu, H.X. Liu, Z.Z. Lou, Highly efficient visible light
plasmonic photocatalyst Ag@Ag(Br,I), Chem. Eur. J., 16 (2010)
10042–10047.
- M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami,
Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst
for destruction of bacteria, J. Am. Chem. Soc., 129 (2007)
9552–9553.
- C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu, H. He, Plasmoninduced
photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation, J. Am. Chem. Soc.,
132 (2010) 857–862.
- Y.J. Sui, C.Y. Su, X.D. Yang, J.L. Hu, X.J. Lin, Ag-AgBr
nanoparticles loaded on TiO2 nanofibers as an efficient
heterostructured photocatalyst driven by visible light, J. Mol.
Catal. A: Chem., 410 (2015) 226–234.
- D.S. Wang, Y.D. Duan, Q.Z. Luo, X.Y. Li, J. An, L.L. Bao, L. Shi,
Novel preparation method for a new visible light photocatalyst:
mesoporous TiO2 supported Ag/AgBr, J. Mater. Chem., 22 (2012)
4847.
- X.X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H.J. Yue, S.H. Feng,
Recyclable and visible light sensitive Ag-AgBr/TiO2: surface
adsorption and photodegradation of MO, Appl. Surf. Sci.,
353 (2015) 913–923.
- Y. Hou, X.Y. Li, Q.D. Zhao, G.H. Chen, C.L. Raston, Role of
hydroxyl radicals and mechanism of Escherichia coli inactivation
on Ag/AgBr/TiO2 nanotube array electrode under visible light
irradiation, Environ. Sci. Technol., 46 (2012) 4042–4050.
- S. Karimifard, M.R.A. Moghaddam, Application of response
surface methodology in physicochemical removal of dyes from
wastewater: a critical review, Sci. Total Environ., 640–641 (2018)
772–797.
- M. Behbahani, M.R.A. Moghaddam, M. Arami, Technoeconomical
evaluation of fluoride removal by electrocoagulation
process: optimization through response surface methodology,
Desalination, 271 (2011) 209–218.
- M. Khedmati, A. Khodaii, H.F. Haghshenas, A study on moisture
susceptibility of stone matrix warm mix asphalt, Constr. Build.
Mater., 144 (2017) 42–49.
- H.F. Haghshenas, A. Khodaii, M. Khedmati, S. Tapkin,
A mathematical model for predicting stripping potential of Hot
Mix Asphalt, Constr. Build. Mater., 75 (2015) 488–495.
- N. Mansouriieh, M.R. Sohrabi, M. Khosravi, Optimization
of profenofos organophosphorus pesticide degradation by
zero-valent bimetallic nanoparticles using response surface
methodology, Arabian J. Chem., (2015), (In Press) https://doi.
org/10.1016/j.arabjc.2015.04.009.
- S. Mosleh, M.R. Rahimi, Intensification of abamectin pesticide
degradation using the combination of ultrasonic cavitation and
visible-light driven photocatalytic process: synergistic effect
and optimization study, Ultrason. Sonochem., 35(Pt A) (2017)
449–457.
- E.E. Mitsika, C. Christophoridis, K. Fytianos, Fenton and
Fenton-like oxidation of pesticide acetamiprid in water
samples: kinetic study of the degradation and optimization
using response surface methodology, Chemosphere, 93 (2013)
1818–1825.
- M.H. Dehghani, Z.S. Niasar, M.R. Mehrnia, M. Shayeghi,
M.A. Al-Ghouti, B. Heibati, G. Mckay, K. Yetilmezsoy,
Optimizing the removal of organophosphorus pesticide
malathion from water using multi-walled carbon nanotubes,
Chem. Eng. J., 310 (2016) 22–32.
- M.G. Alalm, A. Tawfik, S. Ookawara, Comparison of solar
TiO2 photocatalysis and solar photo-Fenton for treatment
of pesticides industry wastewater: operational conditions,
kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
- WEF, APHA, Standard Methods for the Examination of Water
and Wastewater, American Public Health Association (APHA),
Washington, D.C., USA, 2005.
- L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F.X. Wang, J.M. Sun,
Highly efficient visible light-driven Ag/AgBr/ZnO composite
photocatalyst for degrading Rhodamine B, Ceram. Int.,
40 (2014) 3495–3502.
- Y.X. Yang, W. Guo, Y.N. Guo, Y.H. Zhao, X. Yuan, Y.H. Guo,
Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity,
J. Hazard. Mater., 271 (2014) 150–159.
- X.X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H.J. Yue, S.H. Feng,
Recyclable and visible light sensitive Ag-AgBr/TiO2: surface
adsorption and photodegradation of MO, Appl. Surf. Sci.,
353 (2015) 913–923.
- Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, TiO2
nanotube/Ag-AgBr three-component nanojunction for efficient
photoconversion, J. Mater. Chem., 21 (2011) 18067–18076.
- A. Amalraj, A. Pius, Photocatalytic degradation of
monocrotophos and chlorpyrifos in aqueous solution using
TiO2 under UV radiation, J. Water Process Eng., 7 (2015) 94–101.
- Y.-J. Chiang, C.-C. Lin, Photocatalytic decolorization of
methylene blue in aqueous solutions using coupled ZnO/SnO2
photocatalysts, Powder Technol., 246 (2013) 137–143.
- H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, Highperformance
pure and Fe3+-ion doped ZnS quantum dots as
green nanophotocatalysts for the removal of malachite green
under UV-light irradiation, J. Hazard. Mater., 250–251 (2013)
370–378.
- F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C. Chen,
Mechanisms of photocatalytic degradation of Victoria Blue
R using nano-TiO2, Sep. Purif. Technol., 62 (2008) 423–436.
- N. Sobana, K. Selvam, M. Swaminathan, Optimization of
photocatalytic degradation conditions of Direct Red 23 using
nano-Ag doped TiO2, Sep. Purif. Technol., 62 (2008) 648–653.
- H. Zhao, S.H. Xu, J.B. Zhong, X.H. Bao, Kinetic study on the
photo-catalytic degradation of pyridine in TiO2 suspension
systems, Catal. Today, 93–95 (2004) 857–861.
- M.V. Subbaiah, D.-S. Kim, Adsorption of methyl orange from
aqueous solution by aminated pumpkin seed powder: kinetics,
isotherms, and thermodynamic studies, Ecotoxicol. Environ.
Saf., 128 (2016) 109–117.
- X. Chen, Z.F. Zheng, X.B. Ke, E. Jaatinen, T.F. Xie, D.J. Wang,
C. Guo, J.C. Zhao, H.Y. Zhu, Supported silver nanoparticles as
photocatalysts under ultraviolet and visible light irradiation,
Green Chem., 12 (2010) 414–419.