References

  1. R. Serrano, F.J. López, A. Roig-Navarro, F. Hernández, Automated sample clean-up and fractionation of chlorpyrifos, chlorpyrifos-methyl and metabolites in mussels using normalphase liquid chromatography, J. Chromatogr. A, 778 (1997) 151–160.
  2. M. Ismail, H.M. Khan, M. Sayed, W.J. Cooper, Advanced oxidation for the treatment of chlorpyrifos in aqueous solution, Chemosphere, 93 (2013) 645–651.
  3. D.M. Whitacre, Reviews of Environmental Contamination and Toxicology, Vol. 202, Springer, Spain, 2009.
  4. M.A. Randhawa, F.M. Anjum, A. Ahmed, M.S. Randhawa, Field incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in fresh and processed vegetables, Food Chem., 103 (2007) 1016–1023.
  5. S. Malato, J. Blanco, J. Cáceres, A.R. Fernández-Alba, A. Agüera, A. Rodríguez, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy, Catal. Today, 76 (2002) 209–220.
  6. M. Yadav, N. Srivastva, R.S. Singh, S.N. Upadhyay, S.K. Dubey, Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor, Bioresour. Technol., 165 (2014) 265–269.
  7. R. Saini, P. Kumar, Simultaneous removal of methyl parathion and chlorpyrifos pesticides from model wastewater using coagulation/flocculation: central composite design, J. Environ. Chem. Eng., 4 (2016) 673–680.
  8. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  9. J.G. McEvoy, Z.S. Zhang, Synthesis and characterization of Ag/AgBr–activated carbon composites for visible light induced photocatalytic detoxification and disinfection, J. Photochem. Photobiol., A, 321 (2016) 161–170.
  10. A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone- Filho, A. Machulek Jr., C.A.O. Nascimento, Advanced oxidation processes and their application in the petroleum industry: a review, Braz. J. Pet. Gas, 2 (2008) 122–142.
  11. C.-Y. Wang, X. Zhang, X.-N. Song, W.-K. Wang, H.-Q. Yu, Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation, ACS Appl. Mater. Interfaces, 8 (2016) 5320–5326.
  12. B. Paul, A. Locke, W.N. Martens, R.L. Frost, Decoration of titania nanofibres with anatase nanoparticles as efficient photocatalysts for decomposing pesticides and phenols, J. Colloid Interface Sci., 386 (2012) 66–72.
  13. Y.J. Li, L.M. Yu, N. Li, W.F. Yan, X.T. Li, Heterostructures of Ag3PO4/TiO2 mesoporous spheres with highly efficient visible light photocatalytic activity, J. Colloid Interface Sci., 450 (2015) 246–253.
  14. X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An, Y.H. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal., B, 81 (2008) 267–273.
  15. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visiblelight photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  16. C.K. Cheng, M.R. Derahman, M.R. Khan, Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania, J. Environ. Chem. Eng., 3 (2015) 261–270.
  17. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.-H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47 (2008) 7931–7933.
  18. K. Fuku, R. Hayashi, S. Takakura, T. Kamegawa, K. Mori, H. Yamashita, The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance, Angew. Chem., 125 (2013) 7594–7598.
  19. P. Wang, B.B. Huang, Q.Q. Zhang, X.Y. Zhang, X.Y. Qin, Y. Dai, J. Zhan, J.X. Yu, H.X. Liu, Z.Z. Lou, Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I), Chem. Eur. J., 16 (2010) 10042–10047.
  20. M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria, J. Am. Chem. Soc., 129 (2007) 9552–9553.
  21. C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu, H. He, Plasmoninduced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation, J. Am. Chem. Soc., 132 (2010) 857–862.
  22. Y.J. Sui, C.Y. Su, X.D. Yang, J.L. Hu, X.J. Lin, Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light, J. Mol. Catal. A: Chem., 410 (2015) 226–234.
  23. D.S. Wang, Y.D. Duan, Q.Z. Luo, X.Y. Li, J. An, L.L. Bao, L. Shi, Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr, J. Mater. Chem., 22 (2012) 4847.
  24. X.X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H.J. Yue, S.H. Feng, Recyclable and visible light sensitive Ag-AgBr/TiO2: surface adsorption and photodegradation of MO, Appl. Surf. Sci., 353 (2015) 913–923.
  25. Y. Hou, X.Y. Li, Q.D. Zhao, G.H. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation, Environ. Sci. Technol., 46 (2012) 4042–4050.
  26. S. Karimifard, M.R.A. Moghaddam, Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review, Sci. Total Environ., 640–641 (2018) 772–797.
  27. M. Behbahani, M.R.A. Moghaddam, M. Arami, Technoeconomical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology, Desalination, 271 (2011) 209–218.
  28. M. Khedmati, A. Khodaii, H.F. Haghshenas, A study on moisture susceptibility of stone matrix warm mix asphalt, Constr. Build. Mater., 144 (2017) 42–49.
  29. H.F. Haghshenas, A. Khodaii, M. Khedmati, S. Tapkin, A mathematical model for predicting stripping potential of Hot Mix Asphalt, Constr. Build. Mater., 75 (2015) 488–495.
  30. N. Mansouriieh, M.R. Sohrabi, M. Khosravi, Optimization of profenofos organophosphorus pesticide degradation by zero-valent bimetallic nanoparticles using response surface methodology, Arabian J. Chem., (2015), (In Press) https://doi. org/10.1016/j.arabjc.2015.04.009.
  31. S. Mosleh, M.R. Rahimi, Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study, Ultrason. Sonochem., 35(Pt A) (2017) 449–457.
  32. E.E. Mitsika, C. Christophoridis, K. Fytianos, Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: kinetic study of the degradation and optimization using response surface methodology, Chemosphere, 93 (2013) 1818–1825.
  33. M.H. Dehghani, Z.S. Niasar, M.R. Mehrnia, M. Shayeghi, M.A. Al-Ghouti, B. Heibati, G. Mckay, K. Yetilmezsoy, Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes, Chem. Eng. J., 310 (2016) 22–32.
  34. M.G. Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
  35. WEF, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, D.C., USA, 2005.
  36. L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F.X. Wang, J.M. Sun, Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B, Ceram. Int., 40 (2014) 3495–3502.
  37. Y.X. Yang, W. Guo, Y.N. Guo, Y.H. Zhao, X. Yuan, Y.H. Guo, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity, J. Hazard. Mater., 271 (2014) 150–159.
  38. X.X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H.J. Yue, S.H. Feng, Recyclable and visible light sensitive Ag-AgBr/TiO2: surface adsorption and photodegradation of MO, Appl. Surf. Sci., 353 (2015) 913–923.
  39. Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, TiO2 nanotube/Ag-AgBr three-component nanojunction for efficient photoconversion, J. Mater. Chem., 21 (2011) 18067–18076.
  40. A. Amalraj, A. Pius, Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation, J. Water Process Eng., 7 (2015) 94–101.
  41. Y.-J. Chiang, C.-C. Lin, Photocatalytic decolorization of methylene blue in aqueous solutions using coupled ZnO/SnO2 photocatalysts, Powder Technol., 246 (2013) 137–143.
  42. H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, Highperformance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation, J. Hazard. Mater., 250–251 (2013) 370–378.
  43. F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C. Chen, Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2, Sep. Purif. Technol., 62 (2008) 423–436.
  44. N. Sobana, K. Selvam, M. Swaminathan, Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2, Sep. Purif. Technol., 62 (2008) 648–653.
  45. H. Zhao, S.H. Xu, J.B. Zhong, X.H. Bao, Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems, Catal. Today, 93–95 (2004) 857–861.
  46. M.V. Subbaiah, D.-S. Kim, Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies, Ecotoxicol. Environ. Saf., 128 (2016) 109–117.
  47. X. Chen, Z.F. Zheng, X.B. Ke, E. Jaatinen, T.F. Xie, D.J. Wang, C. Guo, J.C. Zhao, H.Y. Zhu, Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Green Chem., 12 (2010) 414–419.