References
- K. Smith, S. Liu, Y. Liu, S. Guo, Can China reduce energy
for water? A review of energy for urban water supply and
wastewater treatment and suggestions for change, Renew. Sust.
Energy Rev., 91 (2018) 41–58.
- K.G. Pavithra, S.K. P, J. V, S.R. P, Removal of colorants from
wastewater: a review on sources and treatment strategies, J. Ind.
Eng. Chem., 75 (2019) 1–19.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal
using novel adsorbents: a review, Environ. Pollut., 252 (2019)
352–365.
- Y.Y. Hu, R.P. Han, Selective and efficient removal of anionic dyes
from solution by zirconium (IV) hydroxide coated magnetic
materials, J. Chem. Eng. Data, 64 (2019) 791–799.
- X. Xu, B.Y. Gao, B. Jin, Q.Y. Yue, Removal of anionic pollutants
from liquids by biomass materials: a review, J. Mol. Liq.,
215 (2016) 565–595.
- J.Y. Song, W.H. Zou, Y.Y. Bian, F.Y. Su, R.P. Han, Adsorption
characteristics of methylene blue by peanut husk in batch and
column modes, Desalination, 265 (2011) 119–125.
- T. Zhou, W.Z. Lu, L.F. Liu, H.M. Zhu, Y.B. Jiao, S.S. Zhang,
R.P. Han, Effective adsorption of light green anionic dye from
solution by CPB modified peanut in column mode, J. Mol. Liq.,
211 (2015) 909–914.
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent
advancement of coagulation–flocculation and its application
in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016)
4363–4389.
- J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial,
P. Drogui, J. Naja, Electrocoagulation process in water
treatment: A review of electrocoagulation modeling approaches,
Desalination, 404 (2017) 1–21.
- M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Emerging
contaminants of high concern and their enzyme-assisted
biodegradation - a review, Environ. Int., 124 (2019) 336–353.
- D. Ayodhya, G. Veerabhadram, A review on recent advances in
photodegradation of dyes using doped and heterojunction based
semiconductor metal sulfide nanostructures for environmental
protection, Mater. Today Energy, 9 (2018) 83–113.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation
process-mediated removal of pharmaceuticals from water:
a review, J. Environ. Manage., 219 (2018) 189–207.
- D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes,
U. Hübner, Evaluation of advanced oxidation processes for
water and wastewater treatment-a critical review, Water Res.,
139 (2018) 118–131.
- S.D. Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics
and adsorption capacities of low-cost sorbents for wastewater
treatment: a review, Sustain. Mater. Technol., 9 (2016) 10–40.
- S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.W. Ji, B.H. Jeon,
Metal–organic frameworks (MOFs) for the removal of emerging
contaminants from aquatic environments, Coordin. Chem. Rev.,
380 (2019) 330–352.
- P. Serra-Crespo, E.V. Ramos-Fernandez, J. Gascon, F. Kapteijn,
Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem. Mater.,
23 (2011) 2565–2572.
- Y.N. Wu, F.T. Li, Y.X. Xu, W. Zhu, C.A. Tao, J.C. Cui, G.T. Li,
Facile fabrication of photonic MOF films through stepwise
deposition on a colloid crystal substrate. Chem. Commun.,
47 (2011) 10094–10096.
- W.B. Lin, Homochiral porous metal-organic frameworks: why
and how?, J. Solid State Chem., 178 (2005) 2486–2490.
- R.G. El-sharkawy, A.S. El-din, H.E.S. El-din, Kinetics
and mechanism of the heterogeneous catalyzedoxidative
decolorization of Acid-Blue 92 using bimetallic metal-organic
frameworks, Spectrochim. Acta A, 79 (2011) 1969–1975.
- F.M. Mulder, T.J. Dingemans, H.G. Schimmel, A.J. Ramirez-
Cuesta, G.J. Kearley, Hydrogen adsorption strength and sites
in the metal organic framework MOF5: comparing experiment
and model calculations, Chem. Phys., 351 (2008) 72–76.
- P. Song, Y.Q. Li, B. He, J.Z. Yang, J. Zheng, X.G. Li, Hydrogen
storage properties of two pillared-layer Ni(II) metal-organic
frameworks, Microporous Mesoporous Mater., 142 (2011)
208–213.
- D.T. de Lill, A. de Bettencourt-Dias, C.L. Cahill, Exploring
lanthanide luminescence in Metal-Organic Frameworks:
synthesis, structure, and guest-sensitized luminescence of a
mixed Europium/Terbium-Adipate Framework and a Terbium-
Adipate Framework, Inorg. Chem., 46 (2007) 3960–3965.
- B.L. Chen, L.B. Wang, F. Zapata, G.D. Qian, E.B. Lobkovsky,
A luminescent microporous metal-organic framework for the
recognition and sensing of anions, J. Am. Chem. Soc., 130 (2008)
6718–6719.
- Q.X. Jia, Y.Q. Wang, Q. Yue, Q.L. Wang, E.Q. Gao, Isomorphous
Co-II and Mn-II materials of tetrazolate-5-carboxylate with
an unprecedented self-penetrating net and distinct magnetic
behaviors, Chem. Commun., 40 (2008) 4894–4896.
- E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl
orange and methylene blue from aqueous solution with a
metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185 (2011) 507–511.
- T. Rajkumar, D. Kukkar, K.-H. Kim, J.R. Sohn, A. Deep,
Cyclodextrin-metal–organic framework (CD-MOF): from
synthesis to applications, J. Ind. Eng. Chem., 72 (2019) 50–66.
- S.H. Huo, X.P. Yan, Metal–organic framework MIL-100(Fe)
for the adsorption of malachite green from aqueous solution,
J. Mater. Chem., 22 (2012) 7449–7455.
- P. Horcajada, S.C. SurbléS, Synthesis and catalytic properties of
MIL-100 (Fe), an iron (III) carboxylate with large pores, Chem.
Commun., 27 (2007) 2820–2822.
- E. Murugan, S. Arumugam, New dendrimer functionalized
multi-walled carbon nanotube hybrids for bone tissue
engineering, RSC Adv., 4 (2014) 35428–35441.
- J.X. Xie, W.J. Chen, Y.Y. Wu, X.X. Wu, Highly efficient adsorption
capacity of MIL-53(Fe) metal organic framework material for
Congo red, Ind. Water Treat., 37 (2017) 27–30.
- F. Zhang, M.Y. Zhang, K.Q. Zhang, Preparation and
characterization of MIL-100(Fe) and its catalytic performance in
knoevenagel condensation, New. Chem. Mater., 45 (2017) 69–72.
- S.R. Ali, V.K. Bansal, A.A. Khan, S.K. Jain, M.A. Ansari, Growth
of zinc hexacyanoferrate nanocubes and their potential as
heterogeneous catalyst for solvent-free oxidation of benzyl
alcohol, J. Mol. Catal., A, 303 (2009) 60–64.
- N.A. Sitnikova, M.A. Komkova, I.V. Khomyakova,
E.E. Karyakina, A.A. Karyakin, Transition metal
hexacyanoferrates in electrocatalysis of H2O2 reduction: an
exclusive property of Prussian Blue, Anal. Chem., 86 (2014)
4131–4134.
- T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+
ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
- Y. Jia, Q. Jin, Y. Li, Y. Sun, J. Huo, X. Zhao, Investigation of the
adsorption behaviour of different types of dyes on MIL-100(Fe)
and their removal from natural water, Anal. Method., 7 (2015)
1463–1470.
- S.J. Gerber, E. Erasmus, Electronic effects of metal
hexacyanoferrates: An XPS and FTIR study, Mater. Chem.
Phys., 203 (2018) 73–81.
- W.H. Zou, H.J. Bai, S.P. Gao, Competitive adsorption of neutral
red and Cu2+ onto Pyrolytic Char: isotherm and kinetic study,
J. Chem. Eng. Data., 57 (2012) 2792–2801.
- L. Zhang, L.Y. Tu, Y. Liang, Q. Chen, Z.S. Li, C.H. Li, Z.H.
Wang, W. Li, Coconut-based activated carbon fibers for
efficient adsorption of various organic dyes, RSC. Adv., 8 (2018)
42280–42291.
- Y. Tian, S.N. Zhong, X.J. Zhu, A.L. Huang, Y.Z. Chen, X.F. Wang,
Mesoporous carbon spheres: synthesis, surface modification
and neutral red adsorption, Mater. Lett., 161 (2015) 656–660.
- R.P. Han, P. Han, Z.H. Cai, Z.H. Zhao, M.S. Tang, Kinetics
and isotherms of Neutral Red adsorption on peanut husk,
J. Environ. Sci., 20 (2008) 1035–1041.
- J. Zhang, Q.Q. Shi, C.L. Zhang, J.T. Xu, B. Zhai, B. Zhang,
Adsorption of Neutral Red onto Mn-impregnated activated
carbons prepared from Typha orientalis, Bioresour. Technol.,
99 (2008) 8974–8980.
- W.Q. Wang, C.C. Li, J.L. Yao, B. Zhang, Y.T. Zhang, J.D. Liu,
Rapid adsorption of neutral red from aqueous solutions by
Zn3[Co(CN)]2·nH2O nanospheres, J. Mol. Liq., 184 (2013) 10–16.
- R.D. Zhang, J.H. Zhang, X.N. Zhang, C.C. Dou, R.P. Han,
Adsorption of Congo red from aqueous solutions using
cationic surfactant modified wheat straw in batch mode: kinetic
and equilibrium study, J. Taiwan Inst. Chem. Eng., 45 (2014)
2578–2583.
- B.L. Zhao, W. Xiao, Y. Shang, H.M. Zhu, R.P. Han, Adsorption
of light green anionic dye using cationic surfactant-modified
peanut husk in batch mode, Arab. J. Chem., 10 (2017)
S3595–S3602.
- Y.N. Shang, X. Xu, B.Y. Gao, Q.Y. Yue, Highly selective and
efficient removal of fluoride from aqueous solution by Zr-La
dual-metal hydroxide anchored bio-sorbents, J. Clean. Prod.,
199 (2018) 36–46.
- Y.F. Gu, M.Y. Liu, M.M. Yang, W.L. Wang, S.S. Zhang, R.P. Han,
Adsorption of light green anionic dye from solution using
polyethyleneimine-modified carbon nanotubes in batch mode,
Desal. Wat. Treat., 138 (2019) 368–378.
- X.F. Ren, R.D. Zhang, W.Z. Lu, T. Zhou, R.P. Han, S.S. Zhang,
Adsorption potential of 2,4-dichlorophenol onto cationic
surfactant-modified Phoenix tree leaf in batch mode, Desal.
Wat. Treat., 57 (2016) 6333–6346.
- Y.C. Rong, R.P. Han, Adsorption of p-chlorophenol and
p-nitrophenol in single and binary systems from solution using
magnetic activated carbon, Korean J. Chem. Eng., 36 (2019)
942–953.
- S. Dawood, T.K. Sen, Removal of anionic dye Congo red from
aqueous solution by raw pine and acid-treated pine cone
powder as adsorbent: equilibrium, thermodynamic, kinetics,
mechanism and process design, Water Res., 46 (2012) 1933–1946.