References

  1. K. Smith, S. Liu, Y. Liu, S. Guo, Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change, Renew. Sust. Energy Rev., 91 (2018) 41–58.
  2. K.G. Pavithra, S.K. P, J. V, S.R. P, Removal of colorants from wastewater: a review on sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019) 1–19.
  3. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  4. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review, Environ. Pollut., 252 (2019) 352–365.
  5. Y.Y. Hu, R.P. Han, Selective and efficient removal of anionic dyes from solution by zirconium (IV) hydroxide coated magnetic materials, J. Chem. Eng. Data, 64 (2019) 791–799.
  6. X. Xu, B.Y. Gao, B. Jin, Q.Y. Yue, Removal of anionic pollutants from liquids by biomass materials: a review, J. Mol. Liq., 215 (2016) 565–595.
  7. J.Y. Song, W.H. Zou, Y.Y. Bian, F.Y. Su, R.P. Han, Adsorption characteristics of methylene blue by peanut husk in batch and column modes, Desalination, 265 (2011) 119–125.
  8. T. Zhou, W.Z. Lu, L.F. Liu, H.M. Zhu, Y.B. Jiao, S.S. Zhang, R.P. Han, Effective adsorption of light green anionic dye from solution by CPB modified peanut in column mode, J. Mol. Liq., 211 (2015) 909–914.
  9. C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation–flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016) 4363–4389.
  10. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  11. M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Emerging contaminants of high concern and their enzyme-assisted biodegradation - a review, Environ. Int., 124 (2019) 336–353.
  12. D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection, Mater. Today Energy, 9 (2018) 83–113.
  13. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  14. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment-a critical review, Water Res., 139 (2018) 118–131.
  15. S.D. Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustain. Mater. Technol., 9 (2016) 10–40.
  16. S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.W. Ji, B.H. Jeon, Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, Coordin. Chem. Rev., 380 (2019) 330–352.
  17. P. Serra-Crespo, E.V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem. Mater., 23 (2011) 2565–2572.
  18. Y.N. Wu, F.T. Li, Y.X. Xu, W. Zhu, C.A. Tao, J.C. Cui, G.T. Li, Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate. Chem. Commun., 47 (2011) 10094–10096.
  19. W.B. Lin, Homochiral porous metal-organic frameworks: why and how?, J. Solid State Chem., 178 (2005) 2486–2490.
  20. R.G. El-sharkawy, A.S. El-din, H.E.S. El-din, Kinetics and mechanism of the heterogeneous catalyzedoxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks, Spectrochim. Acta A, 79 (2011) 1969–1975.
  21. F.M. Mulder, T.J. Dingemans, H.G. Schimmel, A.J. Ramirez- Cuesta, G.J. Kearley, Hydrogen adsorption strength and sites in the metal organic framework MOF5: comparing experiment and model calculations, Chem. Phys., 351 (2008) 72–76.
  22. P. Song, Y.Q. Li, B. He, J.Z. Yang, J. Zheng, X.G. Li, Hydrogen storage properties of two pillared-layer Ni(II) metal-organic frameworks, Microporous Mesoporous Mater., 142 (2011) 208–213.
  23. D.T. de Lill, A. de Bettencourt-Dias, C.L. Cahill, Exploring lanthanide luminescence in Metal-Organic Frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed Europium/Terbium-Adipate Framework and a Terbium- Adipate Framework, Inorg. Chem., 46 (2007) 3960–3965.
  24. B.L. Chen, L.B. Wang, F. Zapata, G.D. Qian, E.B. Lobkovsky, A luminescent microporous metal-organic framework for the recognition and sensing of anions, J. Am. Chem. Soc., 130 (2008) 6718–6719.
  25. Q.X. Jia, Y.Q. Wang, Q. Yue, Q.L. Wang, E.Q. Gao, Isomorphous Co-II and Mn-II materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviors, Chem. Commun., 40 (2008) 4894–4896.
  26. E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185 (2011) 507–511.
  27. T. Rajkumar, D. Kukkar, K.-H. Kim, J.R. Sohn, A. Deep, Cyclodextrin-metal–organic framework (CD-MOF): from synthesis to applications, J. Ind. Eng. Chem., 72 (2019) 50–66.
  28. S.H. Huo, X.P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, J. Mater. Chem., 22 (2012) 7449–7455.
  29. P. Horcajada, S.C. SurbléS, Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate with large pores, Chem. Commun., 27 (2007) 2820–2822.
  30. E. Murugan, S. Arumugam, New dendrimer functionalized multi-walled carbon nanotube hybrids for bone tissue engineering, RSC Adv., 4 (2014) 35428–35441.
  31. J.X. Xie, W.J. Chen, Y.Y. Wu, X.X. Wu, Highly efficient adsorption capacity of MIL-53(Fe) metal organic framework material for Congo red, Ind. Water Treat., 37 (2017) 27–30.
  32. F. Zhang, M.Y. Zhang, K.Q. Zhang, Preparation and characterization of MIL-100(Fe) and its catalytic performance in knoevenagel condensation, New. Chem. Mater., 45 (2017) 69–72.
  33. S.R. Ali, V.K. Bansal, A.A. Khan, S.K. Jain, M.A. Ansari, Growth of zinc hexacyanoferrate nanocubes and their potential as heterogeneous catalyst for solvent-free oxidation of benzyl alcohol, J. Mol. Catal., A, 303 (2009) 60–64.
  34. N.A. Sitnikova, M.A. Komkova, I.V. Khomyakova, E.E. Karyakina, A.A. Karyakin, Transition metal hexacyanoferrates in electrocatalysis of H2O2 reduction: an exclusive property of Prussian Blue, Anal. Chem., 86 (2014) 4131–4134.
  35. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  36. Y. Jia, Q. Jin, Y. Li, Y. Sun, J. Huo, X. Zhao, Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water, Anal. Method., 7 (2015) 1463–1470.
  37. S.J. Gerber, E. Erasmus, Electronic effects of metal hexacyanoferrates: An XPS and FTIR study, Mater. Chem. Phys., 203 (2018) 73–81.
  38. W.H. Zou, H.J. Bai, S.P. Gao, Competitive adsorption of neutral red and Cu2+ onto Pyrolytic Char: isotherm and kinetic study, J. Chem. Eng. Data., 57 (2012) 2792–2801.
  39. L. Zhang, L.Y. Tu, Y. Liang, Q. Chen, Z.S. Li, C.H. Li, Z.H. Wang, W. Li, Coconut-based activated carbon fibers for efficient adsorption of various organic dyes, RSC. Adv., 8 (2018) 42280–42291.
  40. Y. Tian, S.N. Zhong, X.J. Zhu, A.L. Huang, Y.Z. Chen, X.F. Wang, Mesoporous carbon spheres: synthesis, surface modification and neutral red adsorption, Mater. Lett., 161 (2015) 656–660.
  41. R.P. Han, P. Han, Z.H. Cai, Z.H. Zhao, M.S. Tang, Kinetics and isotherms of Neutral Red adsorption on peanut husk, J. Environ. Sci., 20 (2008) 1035–1041.
  42. J. Zhang, Q.Q. Shi, C.L. Zhang, J.T. Xu, B. Zhai, B. Zhang, Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresour. Technol., 99 (2008) 8974–8980.
  43. W.Q. Wang, C.C. Li, J.L. Yao, B. Zhang, Y.T. Zhang, J.D. Liu, Rapid adsorption of neutral red from aqueous solutions by Zn3[Co(CN)]2·nH2O nanospheres, J. Mol. Liq., 184 (2013) 10–16.
  44. R.D. Zhang, J.H. Zhang, X.N. Zhang, C.C. Dou, R.P. Han, Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study, J. Taiwan Inst. Chem. Eng., 45 (2014) 2578–2583.
  45. B.L. Zhao, W. Xiao, Y. Shang, H.M. Zhu, R.P. Han, Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode, Arab. J. Chem., 10 (2017) S3595–S3602.
  46. Y.N. Shang, X. Xu, B.Y. Gao, Q.Y. Yue, Highly selective and efficient removal of fluoride from aqueous solution by Zr-La dual-metal hydroxide anchored bio-sorbents, J. Clean. Prod., 199 (2018) 36–46.
  47. Y.F. Gu, M.Y. Liu, M.M. Yang, W.L. Wang, S.S. Zhang, R.P. Han, Adsorption of light green anionic dye from solution using polyethyleneimine-modified carbon nanotubes in batch mode, Desal. Wat. Treat., 138 (2019) 368–378.
  48. X.F. Ren, R.D. Zhang, W.Z. Lu, T. Zhou, R.P. Han, S.S. Zhang, Adsorption potential of 2,4-dichlorophenol onto cationic surfactant-modified Phoenix tree leaf in batch mode, Desal. Wat. Treat., 57 (2016) 6333–6346.
  49. Y.C. Rong, R.P. Han, Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon, Korean J. Chem. Eng., 36 (2019) 942–953.
  50. S. Dawood, T.K. Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Res., 46 (2012) 1933–1946.