References

  1. Y.-M. Chiang, F.-J. Chang, B.J.-D. Jou, P.-F. Lin, Dynamic ANN for precipitation estimation and forecasting from radar observations, J. Hydrol., 334 (2007) 250–261.
  2. S. Contractor, M.G. Donat, L.V. Alexander, Intensification of the daily wet day rainfall distribution across Australia, Geophys. Res. Lett., 45 (2018) 8568–8576.
  3. Y. Hong, K.-l. Hsu, H. Moradkhani, S. Sorooshian, Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response, Water Resour. Res., 42 (2006), https://doi.org/10.1029/2005WR004398.
  4. M. De Luís, J. Raventós, J.C. González‐Hidalgo, J.R. Sánchez, J. Cortina, Spatial analysis of rainfall trends in the region of Valencia (East Spain), Int. J. Climatol., 20 (2000) 1451–1469.
  5. I. Papaiacovou, Cyprus Water Characteristics, 2014, Retrieved 21 October 2019, Available at: http://nwrm.eu/sites/default/files/regional-workshops/Med/S%204/WG3/NWRMMed_Papaiacovou.pdf
  6. P. Hadjigeorgiou, Reuse of Treated Effluent in Cyprus, 2014, Retrieved 21 October 2019, Available at: http://www.moa.gov.cy/moa/wdd/wdd.nsf/All/49B70CB9BD6A3D27C225826 B00274B16/$file/1st_Water%20Reuse_Cyprus_case.pdf?Open Element
  7. G.J. Huffman, Estimates of root-mean-square random error for finite samples of estimated precipitation, J. Appl. Meteorol., 36 (1997) 1191–1201.
  8. M. Steiner, T.L. Bell, Y. Zhang, E.F. Wood, Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar data set, J. Clim., 16 (2003) 3759–3778.
  9. F. Hossain, E.N. Anagnostou, Assessment of current passivemicrowave‐ and infrared‐based satellite rainfall remote sensing for flood prediction, J. Geophys. Res., 109 (2004) D07102.
  10. F. Hossain, E.N. Anagnostou, T. Dinku, Sensitivity analyses of satellite rainfall retrieval and sampling error on flood prediction uncertainty, IEEE Trans. Geosci. Remote Sens., 42 (2004) 130–139.
  11. E. Baltas, M. Mimikou, Short-term rainfall forecasting using radar data, Water Res. Dev., 10 (1994) 67–78.
  12. M. Grecu, W.F. Krajewski, A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting, J. Hydrol., 239 (2000) 69–84.
  13. E. Morin, W.F. Krajewski, D.C. Goodrich, X.G. Gao, S. Sorooshian, Estimating rainfall intensities from weather radar data: the scale-dependency problem, J. Hydrometeorol., 4 (2003) 782–797.
  14. G.J. Ciach, W.F. Krajewski, G. Villarini, Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data, J. Hydrometeorol., 8 (2007) 1325–1347.
  15. J.E. Caskey Jr., A Markov chain model for the probability of precipitation occurrence in intervals of various length, Mon. Weather Rev., 91 (1963) 298–301.
  16. A.A. Paulo, L.S. Pereira, Prediction of SPI drought class transitions using Markov chains, Water Resour. Manage., 21 (2007) 1813–1827.
  17. S. Chattopadhyay, N. Acharya, G. Chattopadhyay, S. Kiran Prasad, U.C. Mohanty, Markov chain model to study the occurrence of pre-monsoon thunderstorms over Bhubaneswar, India, C.R. Geosci., 344 (2012) 473–482.
  18. R.D. Stern, R. Coe, A model fitting analysis of daily rainfall data, J. R. Stat. Soc., Ser. A, 147 (1984) 1–34.
  19. E.H. Chin, Modeling daily precipitation occurrence process with Markov chain, Water Resour. Res., 13 (1977) 949–956.
  20. R. Srikanthan, T.A. McMahon, Stochastic generation of annual, monthly and daily climate data: a review, Hydrol. Earth Syst. Sci., 5 (2001) 653–670.
  21. J. Lennartsson, A. Baxevani, D.L. Chen, Modelling precipitation in Sweden using multiple step Markov chains and a composite model, J. Hydrol., 363 (2008) 42–59.
  22. L.L. Weiss, Sequences of wet or dry days described by a Markov chain probability model, Mon. Weather Rev., 92 (1964) 169–176.
  23. S.-E. Moon, S.-B. Ryoo, J.-G. Kwon, A Markov chain model for daily precipitation occurrence in South Korea, Int. J. Climatol., 14 (1994) 1009–1016.
  24. R. Mehrotra, R. Srikanthan, A. Sharma, A comparison of three stochastic multi-site precipitation occurrence generators, J. Hydrol., 331 (2006) 280–292.
  25. M. Lazri, S. Ameur, B. Haddad, Analyse de Donnees de Precipitations par Approche Markovienne (Analysis of precipitation data by Markov approach), Larhyss J., 6 (2007) 7–20.
  26. R. Mehrotra, A. Sharma, A nonparametric nonhomogeneous hidden Markov model for downscaling of multisite daily rainfall occurrences, J. Geophys. Res., 110 (2005) D16108.
  27. M. Lazri, Z. Ameur, S. Ameur, Y. Mohia, J.M. Brucker, J. Testud, Rainfall estimation over a Mediterranean region using a method based on various spectral parameters of SEVIRI-M, Adv. Space Res., 52 (2013) 1450–1466.
  28. E. Kiral, C. Mavruk, G. Kiral, Ekonometri öğrencilerinin sayısal derslerdeki akademik performansı: Markov modeli ile bir hesaplama (Academic Performance of Econometrics Students in Numerical Courses: A Calculation With Markov Model), Uluslararası İktisadi ve İdari İncelemeler Dergisi, Özel Sayı, 2018, pp. 617–632.
  29. E. Kiral, C. Mavruk, Academic Progress of Students in Quantitative Sources at Nigde University Vocational School of Social Sciences: A Prediction Using Markov Model, Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9 (2016) 67–276.
  30. E. Kiral, Markov Analizi ile Cep Telefonu Operatör Tercihlerinin Belirlenmesi: Adana İli Üzerine Bir Uygulama (Determination of Mobile Phone Operator Preferences by Markov Analysis: An Application on Adana Province), Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27 (2018) 35–47.
  31. E. Kiral, Avrupa Birliği Ülkelerinin Boşanma Oranı Analizi (Divorce Rate Analysis of European Union Countries), Uluslararası Ekonomi ve Yenilik Dergisi, 4 (2018) 19–38.
  32. E. Kiral, C. Mavruk, Prediction of Central Government Budget Tax Revenues Using Markov Model, Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergis,i, 25 (2016) 41–56.
  33. E. Kiral, Modeling brent oil price with Markov chain process of the fuzzy states, J. Econ. Finance Acc., 5 (2018) 79–83.
  34. E. Kiral, B. Uzun, Forecasting closing returns of Borsa Istanbul index with Markov chain process of the fuzzy states, J. Econ. Finance Acc., 4 (2017) 15–24.
  35. B. Uzun, E. Kıral, Application of Markov chains-fuzzy states to gold price, Procedia Comput. Sci., 120 (2017) 365–371.
  36. M.J. Pardo, D. de la Fuente, Fuzzy Markovian decision processes: application to queueing systems, Comput. Math. Appl., 60 (2010) 2526–2535.
  37. Department of Meteorology, Retrieved 21 October 2019, Available at: http://www.moa.gov.cy/moa/ms/ms.nsf/DMLcyclimate_en/DMLcyclimate_en?OpenDocument&fbclid=IwAR1XC_zoSM_WFJzUkpeN08CuYZe3LVq_ofQR-bbErtapPh588eas5J8BKfU
  38. V. Popovych, I. Dunaieva, Monitoring and evaluation of water availability of the south of Ukraine and Russian Federation with usage of the standardized precipitation index, Int. J. Eng. Res. Technol., 3 (2014) 24–27.