References
- Y.-M. Chiang, F.-J. Chang, B.J.-D. Jou, P.-F. Lin, Dynamic
ANN for precipitation estimation and forecasting from radar
observations, J. Hydrol., 334 (2007) 250–261.
- S. Contractor, M.G. Donat, L.V. Alexander, Intensification of the
daily wet day rainfall distribution across Australia, Geophys.
Res. Lett., 45 (2018) 8568–8576.
- Y. Hong, K.-l. Hsu, H. Moradkhani, S. Sorooshian, Uncertainty
quantification of satellite precipitation estimation and Monte
Carlo assessment of the error propagation into hydrologic
response, Water Resour. Res., 42 (2006), https://doi.org/10.1029/2005WR004398.
- M. De Luís, J. Raventós, J.C. González‐Hidalgo, J.R. Sánchez,
J. Cortina, Spatial analysis of rainfall trends in the region of
Valencia (East Spain), Int. J. Climatol., 20 (2000) 1451–1469.
- I. Papaiacovou, Cyprus Water Characteristics, 2014, Retrieved
21 October 2019, Available at: http://nwrm.eu/sites/default/files/regional-workshops/Med/S%204/WG3/NWRMMed_Papaiacovou.pdf
- P. Hadjigeorgiou, Reuse of Treated Effluent in Cyprus, 2014,
Retrieved 21 October 2019, Available at: http://www.moa.gov.cy/moa/wdd/wdd.nsf/All/49B70CB9BD6A3D27C225826
B00274B16/$file/1st_Water%20Reuse_Cyprus_case.pdf?Open
Element
- G.J. Huffman, Estimates of root-mean-square random error
for finite samples of estimated precipitation, J. Appl. Meteorol.,
36 (1997) 1191–1201.
- M. Steiner, T.L. Bell, Y. Zhang, E.F. Wood, Comparison of two
methods for estimating the sampling-related uncertainty
of satellite rainfall averages based on a large radar data set,
J. Clim., 16 (2003) 3759–3778.
- F. Hossain, E.N. Anagnostou, Assessment of current passivemicrowave‐
and infrared‐based satellite rainfall remote sensing
for flood prediction, J. Geophys. Res., 109 (2004) D07102.
- F. Hossain, E.N. Anagnostou, T. Dinku, Sensitivity analyses
of satellite rainfall retrieval and sampling error on flood prediction
uncertainty, IEEE Trans. Geosci. Remote Sens., 42 (2004)
130–139.
- E. Baltas, M. Mimikou, Short-term rainfall forecasting using
radar data, Water Res. Dev., 10 (1994) 67–78.
- M. Grecu, W.F. Krajewski, A large-sample investigation of
statistical procedures for radar-based short-term quantitative
precipitation forecasting, J. Hydrol., 239 (2000) 69–84.
- E. Morin, W.F. Krajewski, D.C. Goodrich, X.G. Gao, S. Sorooshian,
Estimating rainfall intensities from weather radar data:
the scale-dependency problem, J. Hydrometeorol., 4 (2003)
782–797.
- G.J. Ciach, W.F. Krajewski, G. Villarini, Product-error-driven
uncertainty model for probabilistic quantitative precipitation
estimation with NEXRAD data, J. Hydrometeorol., 8 (2007)
1325–1347.
- J.E. Caskey Jr., A Markov chain model for the probability
of precipitation occurrence in intervals of various length,
Mon. Weather Rev., 91 (1963) 298–301.
- A.A. Paulo, L.S. Pereira, Prediction of SPI drought class
transitions using Markov chains, Water Resour. Manage.,
21 (2007) 1813–1827.
- S. Chattopadhyay, N. Acharya, G. Chattopadhyay, S. Kiran
Prasad, U.C. Mohanty, Markov chain model to study the
occurrence of pre-monsoon thunderstorms over Bhubaneswar,
India, C.R. Geosci., 344 (2012) 473–482.
- R.D. Stern, R. Coe, A model fitting analysis of daily rainfall data,
J. R. Stat. Soc., Ser. A, 147 (1984) 1–34.
- E.H. Chin, Modeling daily precipitation occurrence process
with Markov chain, Water Resour. Res., 13 (1977) 949–956.
- R. Srikanthan, T.A. McMahon, Stochastic generation of annual,
monthly and daily climate data: a review, Hydrol. Earth Syst.
Sci., 5 (2001) 653–670.
- J. Lennartsson, A. Baxevani, D.L. Chen, Modelling precipitation
in Sweden using multiple step Markov chains and a composite
model, J. Hydrol., 363 (2008) 42–59.
- L.L. Weiss, Sequences of wet or dry days described by a Markov
chain probability model, Mon. Weather Rev., 92 (1964) 169–176.
- S.-E. Moon, S.-B. Ryoo, J.-G. Kwon, A Markov chain model for
daily precipitation occurrence in South Korea, Int. J. Climatol.,
14 (1994) 1009–1016.
- R. Mehrotra, R. Srikanthan, A. Sharma, A comparison of three
stochastic multi-site precipitation occurrence generators, J. Hydrol.,
331 (2006) 280–292.
- M. Lazri, S. Ameur, B. Haddad, Analyse de Donnees de
Precipitations par Approche Markovienne (Analysis of precipitation
data by Markov approach), Larhyss J., 6 (2007) 7–20.
- R. Mehrotra, A. Sharma, A nonparametric nonhomogeneous
hidden Markov model for downscaling of multisite daily
rainfall occurrences, J. Geophys. Res., 110 (2005) D16108.
- M. Lazri, Z. Ameur, S. Ameur, Y. Mohia, J.M. Brucker, J. Testud,
Rainfall estimation over a Mediterranean region using a
method based on various spectral parameters of SEVIRI-M,
Adv. Space Res., 52 (2013) 1450–1466.
- E. Kiral, C. Mavruk, G. Kiral, Ekonometri öğrencilerinin sayısal
derslerdeki akademik performansı: Markov modeli ile bir
hesaplama (Academic Performance of Econometrics Students
in Numerical Courses: A Calculation With Markov Model),
Uluslararası İktisadi ve İdari İncelemeler Dergisi, Özel Sayı,
2018, pp. 617–632.
- E. Kiral, C. Mavruk, Academic Progress of Students in
Quantitative Sources at Nigde University Vocational School
of Social Sciences: A Prediction Using Markov Model, Niğde
Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9 (2016)
67–276.
- E. Kiral, Markov Analizi ile Cep Telefonu Operatör Tercihlerinin
Belirlenmesi: Adana İli Üzerine Bir Uygulama (Determination
of Mobile Phone Operator Preferences by Markov Analysis:
An Application on Adana Province), Çukurova Üniversitesi
Sosyal Bilimler Enstitüsü Dergisi, 27 (2018) 35–47.
- E. Kiral, Avrupa Birliği Ülkelerinin Boşanma Oranı Analizi
(Divorce Rate Analysis of European Union Countries), Uluslararası
Ekonomi ve Yenilik Dergisi, 4 (2018) 19–38.
- E. Kiral, C. Mavruk, Prediction of Central Government Budget
Tax Revenues Using Markov Model, Çukurova Üniversitesi
Sosyal Bilimler Enstitüsü Dergis,i, 25 (2016) 41–56.
- E. Kiral, Modeling brent oil price with Markov chain process
of the fuzzy states, J. Econ. Finance Acc., 5 (2018) 79–83.
- E. Kiral, B. Uzun, Forecasting closing returns of Borsa Istanbul
index with Markov chain process of the fuzzy states, J. Econ.
Finance Acc., 4 (2017) 15–24.
- B. Uzun, E. Kıral, Application of Markov chains-fuzzy states
to gold price, Procedia Comput. Sci., 120 (2017) 365–371.
- M.J. Pardo, D. de la Fuente, Fuzzy Markovian decision processes:
application to queueing systems, Comput. Math. Appl.,
60 (2010) 2526–2535.
- Department of Meteorology, Retrieved 21 October 2019, Available
at: http://www.moa.gov.cy/moa/ms/ms.nsf/DMLcyclimate_en/DMLcyclimate_en?OpenDocument&fbclid=IwAR1XC_zoSM_WFJzUkpeN08CuYZe3LVq_ofQR-bbErtapPh588eas5J8BKfU
- V. Popovych, I. Dunaieva, Monitoring and evaluation of water
availability of the south of Ukraine and Russian Federation
with usage of the standardized precipitation index, Int. J. Eng.
Res. Technol., 3 (2014) 24–27.