References

  1. S.M. Hasnain, S.A. Alajlan, Coupling of PV-powered R.O. brackish water desalination plant with solar stills, Desalination, 116 (1998) 57–64.
  2. S. Alawaji, M.S. Smiai, S. Rafique, B. Stafford, PV-powered water pumping and desalination plant for remote areas in Saudi Arabia, Appl. Energy,52 (1995) 283–289.
  3. S.A. Alajlan, M.S. Smiai, Performance and development of PV-plant for water pumping and desalination for remote area in Saudi Arabia, Renewable Energy, 8 (1996) 441–446.
  4. B. Parida, S. Iniyan, R.R. Goic, A review of solar photovoltaic technologies, Renewable Sustainable Energy Rev.,15 (2011) 1625–1636.
  5. E.Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, A direct coupled photovoltaic seawater reverse osmosis desalination system toward battery based systems — a technical and economical experimental comparative study, Desalination, 221 (2008) 17–22.
  6. V. Amati, C.H. Zapater, E. Sciubba, J.U. Marcuello, Process Simulation of a Reverse Osmosis Desalination Plant Powered by Photovoltaic Panels for Kalymnos Island, ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA, 2008, pp. 209–217.
  7. E.Sh. Mohamed, G. Papadakis, Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics, Desalination, 164 (2004) 87–97.
  8. P.E. Minton, Handbook of Evaporation Technology, Noyes Publications, 1986.
  9. A. Gastli, Y. Charabi, S. Zekri, GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum—Oman, Renewable Sustainable Energy Rev., 14 (2010) 821–827.
  10. O.A. Hamed, E.I. Eisa, W.E. Abdalla, Overview of solar desalination, Desalination, 93 (1993) 563–579.
  11. M. Papapetrou, M. Wieghaus, C. Biercamp, Roadmap for the Development of Desalination Powered by Renewable Energy – Promotion of Renewable Energy for Water Production Through Desalination, Fraunhofer ISE, Freiburg im Breisgau, 2010.
  12. D. Herold, A. Neskakis, A small PV-driven reverse osmosis desalination plant on the island of Gran Canaria, Desalination, 137 (2001) 285–292.
  13. M. Thomson, D. Infield, A photovoltaic-powered seawater reverse-osmosis system without batteries, Desalination, 153 (2002) 1–8.
  14. S. Kumarasamy, S. Narasimhan, S. Narasimhan, Optimal operation of battery-less solar powered reverse osmosis plant for desalination, Desalination, 375 (2015) 89–99.
  15. H. Qiblawey, F. Banat, Q. Al-Nasser, Performance of reverse osmosis pilot plant powered by photovoltaic in Jordan, Renewable Energy, 36 (2011) 3452–3460.
  16. S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral wound reverse osmosis membrane modules: Part I — model development and parameter estimation, Desalination, 280 (2011) 1403–1411.
  17. T. Kaghazchi, M. Mehri, M.T. Ravanchi, A. Kargari, A mathematical modeling of two industrial seawater desalination plants in the Persian Gulf region, Desalination, 252 (2010) 135–142.
  18. A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
  19. A. Gambier, A. Krasnik, E. Badreddin, Dynamic Modeling of a Simple Reverse Osmosis Desalination Plant for Advanced Control Purposes, Proceedings of the 2007 American Control Conference, IEEE, Marriott Marquis Hotel at Times Square New York City, USA, July 11e13, 2007.
  20. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  21. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res.,43 (2009) 2317–2348.
  22. S. Abdallah, M. Abu-Hilal, M.S. Mohsen, Performance of a photovoltaic powered reverse osmosis system under local climatic conditions, Desalination,183 (2005) 95–104.
  23. W. Gocht, A. Sommerfeld, R. Rautenbach, Th. Melin, L. Eilers, A. Neskakis, D. Herold, V. Horstmann, M. Kabariti, A. Muhaidat, Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system - a pilot plant study in Jordan, Renewable Energy,14 (1998) 287–292.
  24. W.W. Boesch, World’s first solar powered reverse osmosis desalination plant, Desalination, 41 (1982) 233–237.
  25. E.S. Hrayshat, Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy, Renewable Energy, 33 (2008) 1784–1790.
  26. A. Colangelo, D. Marano, G. Spagna, V.K. Sharma, Photovoltaic powered reverse osmosis seawater desalination systems, Appl. Energy, 64 (1999) 289–305.
  27. Z. Al-Suleimani, V.R. Nair, Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman, Appl. Energy, 65 (2000) 367–380.
  28. I. Ullah, M.G. Rasul, Recent developments in solar thermal desalination technologies: a review, Energies, 12 (2019) 119.
  29. E.L. Peterson, S.R. Gray, Effectiveness of desalination powered by a tracking solar array to treat saline bore water, Desalination, 293 (2012) 94–103.
  30. A. Kaya, M.E. Tok, M. Koc, A levelized cost analysis for solar energy-powered seawater desalination in the Emirate of Abu Dhabi, Sustainability, 11 (2019) 1691.
  31. H.M. Laborde, K.B. França, H. Neff, A.M.N. Lima, Optimization strategy for a small-scale reverse osmosis water desalination system based on solar energy, Desalination, 133 (2001) 1–12.
  32. R. Nagaraj, D.T. Murthy, M.M. Rajput, Modeling renewables based hybrid power system with desalination plant load using neural networks, Distrib. Gener. Altern. Energy J., 34 (2019) 32–46.
  33. S.A. Klein, W.A. Beckman, J.W. Mitchell, J.A. Duffie, N.A. Duffie, T.L. Freeman, J.C. Mitchell, J.E. Braun, B.L. Evans, J.P. Kummer, R.E. Urban, A. Fiksel, J.W. Thornton, N.J. Blair, P.M. Williams, D.E. Bradley, T.P. McDowell, M. Kummert, D.A. Arias, TRNSYS, A Transient System Simulation Program Manual, Solar Energy Laboratory, University of Wisconsin – Madison, USA, 2016.
  34. Azurspace Solar Power GmbH, 2018. Available at: www. azurspace.com.
  35. A. Jain, A. Kapoor, Exact analytical solutions of the parameters of real solar cells using Lambert W-function, Sol. Energy Mater. Sol. Cells, 81 (2004) 269–277.
  36. F. Ghani, M. Duke, Numerical determination of parasitic resistances of a solar cell using the Lambert W-function, Sol. Energy, 85 (2011) 2386–2394.
  37. F. Ghani, G. Rosengarten, M. Duke, J.K. Carson, On the influence of temperature on crystalline silicon solar cell characterization parameters, Sol. Energy, 112 (2015) 437–445.
  38. A.A. Ghoneim, K.M. Kandil, T.H. Alzanki, M.R. Alenezi, Performance analysis of high-concentrated multi-junction solar cells in hot climate, Int. J. Sustainable Energy, 37 (2018) 294–310.
  39. A. Kribus, K. Daniel, G. Mittelman, A. Hirshfeld, Y. Flitsanov, A. Dayan, A miniature concentrating photovoltaic and thermal system, Energy Convers. Manage., 47 (2006) 3582–3591.
  40. M. Li, X. Ji, G. Li, S. Wei, Y.F. Li, F. Shi, Performance study of solar cell arrays based on a trough concentrating photovoltaic/thermal system, Appl. Energy, 88 (2011) 3218–3227.
  41. F. Calise, L. Vanoli, Parabolic trough photovoltaic/thermal collectors: design and simulation model, Energies, 5 (2012) 4186–4208.
  42. A. Buonomano, F. Calise, M.D. d’Accadia, L.A. Vanoli, A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: design and simulation model, Energy, 61 (2013) 59–71.
  43. DOW Filmtec™ Membranes, Filmtec™ Reverse Osmosis Membranes: Technical Manual, Form No. 609–00071–0705, 2018. Available at: http://www.dowwaterandprocess.com/en.
  44. L. Song, K.G. Tay, Performance prediction of a long crossflow reverse osmosis membrane channel, J. Membr. Sci., 281 (2006) 163–169.
  45. E.M. Van Wagner, A.C. Sagle, M.M. Sharma, B.D. Freeman, Effect of crossflow testing conditions, including feed pH and continuous feed filtration, on commercial reverse osmosis membrane performance, J. Membr. Sci., 345 (2009) 97–109.
  46. S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral wound reverse osmosis membrane modules: Part II — experimental validation, Desalination, 277 (2011) 257–264.
  47. K. Nishioka, T. Takamoto, T. Agui, T. Kaneiwa, Y. Uraoka, Y.T. Fuyuki, Evaluation of temperature characteristics of highefficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration, Sol. Energy Mater. Sol. Cells, 85 (2015) 429–436.
  48. T.P. Chang, Output energy of a photovoltaic module mounted on a single-axis tracking system, Appl. Energy, 86 (2009) 2071–2078.