References
- J. Lee, C.-G. Kim, J.E. Lee, N.W. Kim, H. Kim, Application of
artificial neural networks to rainfall forecasting in the Geum
River Basin, Korea, Water, 10 (2018) 1–14.
- N. Pyrgiotis, K.M. Malone, A. Odoni, Modelling delay
propagation within an airport network, Transp. Res. Part C,
27 (2013) 60–75.
- B. Yu, Z. Guo, S. Asian, H. Wang, G. Chen, Flight delay prediction
for commercial air transport: a deep learning approach, Transp.
Res. Part E, 125 (2019) 203–221.
- B. Thiagarajan, L. Srinivasan, A.V. Sharma, D. Sreekanthan,
V. Vijayaraghavan, A Machine Learning Approach for Prediction
of On-time Performance of Flights, IEEE/AIAA 36th
Digital Avionics Systems Conference (DASC), St. Petersburg,
FL, USA, 2017, pp. 1–6.
- D.R. Nayak, A. Mahapatra, P. Mishra, A survey on rainfall
prediction using artificial neural network, Int. J. Comput. Appl.,
72 (2013) 32–40.
- S.I. Abba, S. Jasim, J. Abdullahi, River water modelling prediction
using multi-linear regression, artificial neural network, and
adaptive neuro-fuzzy inference system techniques, Procedia
Comput. Sci., 120 (2018) 75–82.
- R.P. Paswan, S.A. Begum, MLP for Prediction of Area and
Rice Production of Upper Brahmaputra Valley Zone of Assam,
2013 Fourth International Conference on Computing, Communications
and Networking Technologies (ICCCNT), Tiruchengode,
India, (2013), pp. 1–9.
- J. Rodrigues, A. Deshpande, Prediction of Rainfall for all the
States of India Using Auto-Regressive Integrated Moving
Average Model and Multiple Linear Regression, 2017 International
Conference on Computing, Communication, Control
and Automation (ICCUBEA), Pune, India, 2017, pp. 1–4.
- D.S. Wilks, Multisite generalization of a daily stochastic
precipitation generation model, J. Hydrol., 210 (1998)
178–191.
- O.S. Idowu, C.J. Rautenbach, Model output statistics to improve
severe storms prediction over Western Sahel, Atmos. Res., 93
(2009) 419–425.
- S. Zainudin, D.S. Jasim, A.A. Bakar, Comparative analysis of
data mining techniques for Malaysian rainfall prediction, Int.
J. Adv. Sci. Eng. Inf. Technol., 6 (2016) 1148–1153.
- A. Kumar, M.P. Singh, S. Ghosh, A. Anand, Weather forecasting
model using artificial neural network, Procedia Technol.,
4 (2012) 311–318.
- N.M. Frencha, F.W. Krajewskia, R. Cuykendallb, Rainfall
forecasting in space and time using a neural network, J. Hydrol.,
137 (1992) 1–31.
- N.S. Philip, J. Kouneiher, A neural network tool for analyzing
trends in rainfall, Comput. Geosci., 29 (2003) 215–223.
- M.H. Gholizadeh, M. Darand, Forecasting precipitation with
artificial neural networks (Case Study: Tehran), J. Appl. Sci.,
9 (2009) 1786–1790.
- L. Bodri, V. Čermák, Prediction of extreme precipitation using
a neural network: application to summer flood occurrence in
Moravia, Adv. Eng. Software, 31 (2000) 311–321.
- C.K. Luk, J.E. Ball, A. Sharma, An application of artificial
neural networks for rainfall forecasting, Math. Comput.
Modell., 33 (2001) 683–693.
- H. Aksoy, A. Dahamsheh, Artificial neural network models
for forecasting monthly precipitation in Jordan, Atmos. Res.,
101 (2011) 228–236.
- S.A. Asklany, K. Elhelow, I.K. Youssef, M. Abd El-Wahab,
Rainfall events prediction using rule-based fuzzy inference
system, Stochastic Environ. Res. Risk Assess., 23 (2009) 917–931.
- S. Aftab, M. Ahmad, N. Hameed, M. Salman, I. Ali, Z. Nawaz,
Rainfall prediction using data mining techniques: a systematic
literature review, Int. J. Adv. Comput. Sci. Appl., 9 (2018)
143–150.
- A. Helen, A.A. Helen, O.A. Bolanle, F.O. Samuel, Comparative
analysis of rainfall prediction models using neural network and
fuzzy logic, Int. J. Soft Comput. Eng., 5 (2016) 4–7.
- A.Y. Ardiansyah, R. Sarno, O. Giandi, Rain Detection System
for Estimate Weather Level Using Mamdani Fuzzy Inference
System, 2018 International Conference on Information and
Communications Technology (ICOIACT), Yogyakarta, Indonesia,
2018, pp. 848–854.
- B. Suprapty, R. Malani, J. Minardi, Rainfall prediction using
fuzzy inference system for preliminary micro-hydropower
plant planning, IOP Conf. Ser.: Earth Environ. Sci., 144 (2018)
1–9.
- G. Abbas, Annual rainfall forecasting by using Mamdani fuzzy
inference system, Res. J. Environ. Sci., 3 (2009) 400–413.
- A.H. Payab, U. Türker, Analyzing temporal-spatial characteristics
of drought events in the northern part of Cyprus,
Environ. Dev. Sustainability, 20 (2018) 1553–1574.
- A.H. Payab, U. Türker, Comparison of standardized meteorological
indices for drought monitoring at northern part of
Cyprus, Environ. Earth Sci., 78 (2019) 1–19.
- H. Gökcekuş, A. Iravanian, U. Türker, G. Oğuz, S. Sözen,
D. Orhon, Massive freshwater transport: a new dimension for
integrated water-wastewater management in North Cyprus,
Desal. Wat. Treat, 132 (2018) 215–225.
- G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modelling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant
performance analysis using artificial intelligence – an ensemble
approach, Water Sci. Technol., 78 (2018) 2064–2076.
- R.A. Abdulkadir, K.A. Imam, M.B. Jibril, Simulation of back
propagation neural network for iris flower classification, Am. J.
Eng. Res., 61 (2017) 200–205.
- V. Nourani, M. Sayyah Fard, Sensitivity analysis of the artificial
neural network outputs in simulation of the evaporation
process at different climatologic regimes, Adv. Eng. Software,
47 (2012) 127–146.
- A.R. Várkonyi-Kóczy, B. Tusor, Improved Back-Propagation
Algorithm For Neural Network Training, 2011 IEEE 7th
International Symposium on Intelligent Signal Processing,
Floriana, Malta, 2011, pp. 66–73.
- M.S. Gaya, N.A. Wahab, Y. Sam, S.I. Samsuddin, Comparison
of ANFIS and neural network direct inverse control applied
to wastewater treatment system, Adv. Mater. Res., 845 (2014)
543–548.