References

  1. M.C. Hennemann, M.M. Petrucio, Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil, Environ. Monit. Assess., 181 (2011) 347–361.
  2. S. Cataudella, D. Crosetti, F. Massa, Eds., Mediterranean Coastal Lagoons: Sustainable Management and Interactions Among Aquaculture, Capture Fisheries and the Environment. Studies and Reviews, General Fisheries Commission for the Mediterranean 95, Food and Agriculture Organization of the United Nations, Rome, 2015.
  3. A. Pérez-ruzafa, I.M. Pérez-ruzafa, A. Newton, C. Marcos, Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity, Coasts and Estuaries, Elsevier Inc., New York, 2019, pp. 253–276.
  4. M. Necibi, N. Mzoughi, M.N. Daly Yahia, O. Pringault, Distributions of organochlorine pesticides and polychlorinated biphenyl in surface water from Bizerte Lagoon, Tunisia, Desal. Wat. Treat., 56 (2015) 2663–2671.
  5. H. Alphan, T.K. Yilmaz, Monitoring environmental changes in the Mediterranean coastal landscape: the case of Cukurova, Turkey, Environ. Manage., 35 (2005) 607–619.
  6. M.H. Ahmed, B.M. El Leithy, J.R. Thompson, R.J. Flower, M. Ramdani, F. Ayache, S.M. Hassan, Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons, Hydrobiologia, 622 (2009) 147–171.
  7. V. Markogianni, E. Dimitriou, Landuse and NDVI change analysis of Sperchios river basin (Greece) with different spatial resolution sensor data by Landsat/MSS/TM and OLI, Desal. Wat. Treat., 57 (2016) 29092–29103.
  8. S.J. Ki, D.J. Jeon, J.H. Kim, Influence of spatial resolution of radar images on the parameterization and performance of SWAT model, Desal. Wat. Treat., 57 (2016) 27548–27556.
  9. J. Li, D.P. Roy, A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring, Remote Sens., 9 (2017) 902.
  10. D.P. Roy, M.A. Wulder, T.R. Loveland, C.E. Woodcock, R.G. Allen, M.C. Anderson, D. Helder, J.R. Irons, D.M. Johnson, R. Kennedy, T.A. Scambos, C.B. Schaaf, J.R. Schott, Y. Sheng, E.F. Vermote, A.S. Belward, R. Bindschadler, W.B. Cohen, Z. Zhu, Landsat-8: science and product vision for terrestrial global change research, Remote Sens. Environ., 145 (2014) 154–172.
  11. A. Lefebvre, C. Sannier, T. Corpetti, Monitoring urban areas with Sentinel-2A data: application to the update of the Copernicus high resolution layer imperviousness degree, Remote Sens., 8 (2016) 606.
  12. H. van der Werff, F. van der Meer, Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing, Remote Sens., 8 (2016) 11.
  13. A. Lessio, V. Fissore, E. Borgogno-Mondino, Preliminary tests and results concerning integration of Sentinel-2 and Landsat-8 OLI for crop monitoring, J. Imaging, 3 (2017) 9.
  14. S.K. Jain, R.D. Singh, M.K. Jain, A.K. Lohani, Delineation of flood-prone areas using remote sensing techniques, Water Resour. Manage., 19 (2005) 333–347.
  15. H.Q. Xu, Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27 (2006) 3025–3033.
  16. T.D. Acharya, A. Subedi, D.H. Lee, Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal, Sensors (Switzerland), 18 (2018) 1–15.
  17. L.Y. Ji, X.R. Geng, K. Sun, Y.C. Zhao, P. Gong, Target detection method for water mapping using Landsat 8 OLI/TIRS imagery, Water (Switzerland), 7 (2015) 794–817.
  18. M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging, 13 (2004) 146–165.
  19. N.Y. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979) 62–66.
  20. Z.Q. Du, W.B. Li, D.B. Zhou, L.Q. Tian, F. Ling, H.L. Wang, Y.M. Gui, B. Sun, Analysis of Landsat-8 OLI imagery for land surface water mapping, Remote Sens. Lett., 5 (2014) 672–681.
  21. Y.H. Ren, Y. Liu, Surface water classification from GF-4 images using a time series water index, Int. J. Remote Sens., 40 (2019) 6336–6364.
  22. K. Ezimand, A.A. Kakroodi, M. Kiavarz, The development of spectral indices for detecting built-up land areas and their relationship with land-surface temperature, Int. J. Remote Sens., 39 (2018) 8428–8449.
  23. O.E. Frihy, Kh.M. Dewidar, S.M. Nasr, M.M. El Raey, Change detection of the northeastern Nile Delta of Egypt: shoreline changes, Spit evolution, margin changes of Manzala lagoon and its islands, Int. J. Remote Sens., 19 (1998) 1901–1912.
  24. P.S. Frazier, K.J. Page, Water body detection and delineation with Landsat TM data, Photogramm. Eng. Remote Sens., 66 (2000) 1461–1467.
  25. F. Zhang, T. Tiyip, H.-T. Kung, V.C. Johnson, J. Wang, I. Nurmemet, Improved water extraction using Landsat TM/ ETM+ images in Ebinur Lake, Xinjiang, China, Remote Sens. Appl.: Soc. Environ., 4 (2016) 109–118.
  26. Y. Zhou, J.W. Dong, X.M. Xiao, T. Xiao, Z.Q. Yang, G.S. Zhao, Z.H. Zou, Y.W. Qin, Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors, Water (Switzerland), 9 (2017) 4.
  27. M. Arekhi, C. Goksel, F. Balik Sanli, G. Senel, Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada Longos Forest, ISPRS Int. J. Geo-Inf., 8 (2019) 56.
  28. E.P. Crist, A TM tasseled cap equivalent transformation for reflectance factor data, Remote Sens. Environ., 17 (1985) 301–306.
  29. S.K. McFeeters, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17 (1996) 1425–1432.
  30. G.L. Feyisa, H. Meilby, R. Fensholt, S.R. Proud, Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery, Remote Sens. Environ., 140 (2014) 23–35.
  31. E. Mandanici, G. Bitelli, Preliminary comparison of Sentinel-2 and Landsat 8 imagery for a combined use, Remote Sens., 8 (2016) 12.