References

  1. V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial intelligence based ensemble modeling for multi-station prediction of precipitation, Atmosphere, 10 (2019) 80.
  2. V. Nourani, G. Elkiran, J. Abdullahi, Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements, J. Hydrol., 577 (2019) 123958.
  3. J. Abbot, J. Marohasy, Application of artificial neural networks to rainfall forecasting in Queensland, Australia, Adv. Atmos. Sci., 29 (2012) 717–730.
  4. M.T. Dastorani, H. Afkhami, H. Sharifidarani, M. Dastorani, Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in Central Iran), J. Appl. Sci., 10 (2010) 2387–2394.
  5. Z.M. Yaseen, M.I. Ghareb, Ebtehaj, H. Bonakdari, R. Siddique, S. Heddam, R. Deo, Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA, Water Resour. Manage., 32 (2018) 105–122.
  6. A.D. Mehr, V. Nourani, V.K. Khosrowshahi, M.A. Ghorbani, A hybrid support vector regression–firefly model for monthly rainfall forecasting, Int. J. Environ. Sci. Technol., 16 (2019) 335–346.
  7. O. Kisi, H. Sanikhani, Prediction of long‐term monthly precipitation using several soft computing methods without climatic data, Int. J. Climatol., 35 (2015) 4139–4150.
  8. A.H. Payab, U. Türker, Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus, Environ. Dev. Sustain., 20 (2018) 1553–1574.
  9. A.H. Payab, U. Türker, Comparison of standardized meteorological indices for drought monitoring at northern part of Cyprus, Environ. Earth Sci., 78 (2019) 309.
  10. G. Elkiran, Z. Ongul, Implications of excessive water withdrawals to the environment of Northern Cyprus, Water Environ. J., 23 (2009) 145–154.
  11. D.R. Legates, G.J. McCabe Jr, Evaluating the use of “goodnessof‐ fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35 (1999) 233–241.
  12. H.M. Tan, D. Gouwanda, P.E. Poh, Adaptive neural-fuzzy inference system vs. anaerobic digestion model No. 1 for performance prediction of thermophilic anaerobic digestion of palm oil mill effluent, Process Saf. Environ., 117 (2018) 92–99.
  13. A. Solgi, H. Zarei, V. Nourani, R. Bahmani, A new approach to flow simulation using hybrid models, Appl. Water Sci., 7 (2017) 3691–3706.
  14. K.S., Parmar, R. Bhardwaj, River water prediction modeling using neural networks, fuzzy and wavelet coupled model, Water Resour. Manage., 29 (2015) 17–33.
  15. M.A. Sojitra, R.C. Purohit, P.A. Pandya, Comparative study of daily rainfall forecasting models using adaptive-neuro fuzzy inference system (ANFIS), Curr. World Environ., 10 (2015) 529.
  16. C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995) 273–297.
  17. W.C. Wang, D.M. Xu, K.W. Chau, S. Chen, Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD, J. Hydroinform., 15 (2013) 1377–1390.
  18. V. Vapnik, V. Vapnik, Statistical learning theory Wiley, New York, 1998, pp. 156–160.
  19. A.H. Haghiabi, H.M. Azamathulla, A. Parsaie, Prediction of head loss on cascade weir using ANN and SVM, J. Hydrol. Eng., 23 (2017) 102–110.
  20. G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river, Global J. Environ. Sci. Manage., 4 (2018) 439–450.
  21. V. Nourani, T.R. Khanghah, A.H. Baghanam, Application of entropy concept for input selection of wavelet-ANN based rainfall-runoff modeling, J. Environ. Inform., 26 (2015) 52–70.
  22. V. Nourani, G. Elkiran, J. Abdullahi, A. Tahsin, Multi-region modeling of daily global solar radiation with artificial intelligence ensemble, Nat. Resour. Res., (2019) 1–22. https://doi.org/10.1007/s11053–018–09450–9.
  23. Z.M. Yaseen, I. Ebtehaj, S. Kim, H. Sanikhani, H. Asadi, M.I. Ghareb, S. Shahid, Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis, Water, 11 (2019) 502.
  24. G. Elkiran, V. Nourani, S.I. Abba, Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach, J. Hydrol., 577 (2019) 123962.