References
- V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial
intelligence based ensemble modeling for multi-station prediction
of precipitation, Atmosphere, 10 (2019) 80.
- V. Nourani, G. Elkiran, J. Abdullahi, Multi-station artificial
intelligence based ensemble modeling of reference evapotranspiration
using pan evaporation measurements, J. Hydrol.,
577 (2019) 123958.
- J. Abbot, J. Marohasy, Application of artificial neural networks
to rainfall forecasting in Queensland, Australia, Adv. Atmos.
Sci., 29 (2012) 717–730.
- M.T. Dastorani, H. Afkhami, H. Sharifidarani, M. Dastorani,
Application of ANN and ANFIS models on dryland
precipitation prediction (case study: Yazd in Central Iran),
J. Appl. Sci., 10 (2010) 2387–2394.
- Z.M. Yaseen, M.I. Ghareb, Ebtehaj, H. Bonakdari, R. Siddique,
S. Heddam, R. Deo, Rainfall pattern forecasting using novel
hybrid intelligent model based ANFIS-FFA, Water Resour.
Manage., 32 (2018) 105–122.
- A.D. Mehr, V. Nourani, V.K. Khosrowshahi, M.A. Ghorbani,
A hybrid support vector regression–firefly model for monthly
rainfall forecasting, Int. J. Environ. Sci. Technol., 16 (2019)
335–346.
- O. Kisi, H. Sanikhani, Prediction of long‐term monthly
precipitation using several soft computing methods without
climatic data, Int. J. Climatol., 35 (2015) 4139–4150.
- A.H. Payab, U. Türker, Analyzing temporal–spatial characteristics
of drought events in the northern part of Cyprus,
Environ. Dev. Sustain., 20 (2018) 1553–1574.
- A.H. Payab, U. Türker, Comparison of standardized
meteorological indices for drought monitoring at northern part
of Cyprus, Environ. Earth Sci., 78 (2019) 309.
- G. Elkiran, Z. Ongul, Implications of excessive water withdrawals
to the environment of Northern Cyprus, Water Environ.
J., 23 (2009) 145–154.
- D.R. Legates, G.J. McCabe Jr, Evaluating the use of “goodnessof‐
fit” measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 35 (1999) 233–241.
- H.M. Tan, D. Gouwanda, P.E. Poh, Adaptive neural-fuzzy
inference system vs. anaerobic digestion model No. 1 for
performance prediction of thermophilic anaerobic digestion of
palm oil mill effluent, Process Saf. Environ., 117 (2018) 92–99.
- A. Solgi, H. Zarei, V. Nourani, R. Bahmani, A new approach to
flow simulation using hybrid models, Appl. Water Sci., 7 (2017)
3691–3706.
- K.S., Parmar, R. Bhardwaj, River water prediction modeling
using neural networks, fuzzy and wavelet coupled model,
Water Resour. Manage., 29 (2015) 17–33.
- M.A. Sojitra, R.C. Purohit, P.A. Pandya, Comparative study of
daily rainfall forecasting models using adaptive-neuro fuzzy
inference system (ANFIS), Curr. World Environ., 10 (2015) 529.
- C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn.,
20 (1995) 273–297.
- W.C. Wang, D.M. Xu, K.W. Chau, S. Chen, Improved annual
rainfall-runoff forecasting using PSO–SVM model based on
EEMD, J. Hydroinform., 15 (2013) 1377–1390.
- V. Vapnik, V. Vapnik, Statistical learning theory Wiley, New
York, 1998, pp. 156–160.
- A.H. Haghiabi, H.M. Azamathulla, A. Parsaie, Prediction of
head loss on cascade weir using ANN and SVM, J. Hydrol. Eng.,
23 (2017) 102–110.
- G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modelling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- V. Nourani, T.R. Khanghah, A.H. Baghanam, Application of
entropy concept for input selection of wavelet-ANN based
rainfall-runoff modeling, J. Environ. Inform., 26 (2015) 52–70.
- V. Nourani, G. Elkiran, J. Abdullahi, A. Tahsin, Multi-region
modeling of daily global solar radiation with artificial
intelligence ensemble, Nat. Resour. Res., (2019) 1–22.
https://doi.org/10.1007/s11053–018–09450–9.
- Z.M. Yaseen, I. Ebtehaj, S. Kim, H. Sanikhani, H. Asadi, M.I.
Ghareb, S. Shahid, Novel hybrid data-intelligence model for
forecasting monthly rainfall with uncertainty analysis, Water,
11 (2019) 502.
- G. Elkiran, V. Nourani, S.I. Abba, Multi-step ahead modelling
of river water quality parameters using ensemble artificial
intelligence-based approach, J. Hydrol., 577 (2019) 123962.