References

  1. O. Mehmet, H. Bicak, Modern and Traditional Irrigation Technologies in the Eastern Mediterranean, IDRC International Development Research Centre, Ottawa, 2002.
  2. J.J. Hobbs, Fundamentals of World Regional Geography, Cengage Learning, 2016.
  3. O. Phillips-Agboola, F. Egelioglu, Water scarcity in North Cyprus and solar desalination research: a review, Desal. Wat. Treat., 43 (2012) 29–42.
  4. M. Song, R. Wang, X. Zeng, Water resources utilization efficiency and influence factors under environmental restrictions, J. Cleaner Prod., 184 (2018) 611–621
  5. S. Kundu, D. Khare, A. Mondal, Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine, Geosci. Front., 8 (2017) 583–596.
  6. N. Seino, T. Aoyagi, H. Tsuguti, Numerical simulation of urban impact on precipitation in Tokyo: How does urban temperature rise affect precipitation?, Urban Clim., 23 (2018) 8–35.
  7. Y. Kang, S. Khan, X. Ma, Climate change impacts on crop yield, crop water productivity and food security – a review, Progr. Nat. Sci., 19 (2009) 1665–1674
  8. T. Iizumi, N. Ramankutty, How do weather and climate influence cropping area and intensity?, Global Food Secur., 4 (2015) 46–50.
  9. C.P. McMullen, J.R. Jabbour, Climate Change Science Compendium, United Nations Environment Programme, Nairobi, 2009.
  10. Mislan, Haviluddin, S. Hardwinarto, Sumaryono, M. Aipassa, Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan – Indonesia, Procedia Comput. Sci., 59 (2015) 142–151.
  11. T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee, A. Bahadori, A neural network-based local rainfall prediction system using meteorological data on the Internet: a case study using data from the Japan Meteorological Agency, Appl. Soft Comput., 56 (2017) 317–330.
  12. Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the Kerala state of India using artificial intelligence approaches, Comp. Electr. Eng., 70 (2018) 66–73.
  13. R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petković, M. Gocic, S.C. Lee, Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology, Atmos. Res., 171 (2016) 21–30.
  14. A.M. Bagirov, A. Mahmood, A comparative assessment of models to predict monthly rainfall in Australia, Water Resour. Manage., 32 (2018) 1777–1794.
  15. N.Z. Mohd-Safar, D. Ndzi, D. Sanders, H.M. Noor, L.M. Kamarudin, Integration of fuzzy C-means and artificial neural network for short-term localized rainfall forecast in tropical climate, Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016.
  16. R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh, A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci., 11 (2018), doi: 10.1007/s12517-018-3804-z.
  17. R.V. Ramana, B. Krishna, S.R. Kumar, N.G. Pandey, Monthly rainfall prediction using wavelet neural network analysis, Water Resour. Manage., 27 (2013) 3697–3711.
  18. S.R. Devi, P. Arulmozhivarman, C. Venkatesh, P. Agarwal, Performance comparison of artificial neural network models for daily rainfall prediction, Int. J. Autom. Comput., 13 (2016) 417–427.
  19. A.D. Dubey, Comparative Analysis of ANFIS and SVR Model Performance for Rainfall Prediction, Advances in Intelligent Systems and Computing Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO), 2015, pp. 63–75.
  20. M. Majumder, R.N. Barman, Application of Artificial Neural Networks in Short-Term Rainfall Forecasting, Application of Nature Based Algorithm in Natural Resource Management, 2012, pp. 43–58.
  21. Q. Ouyang, W. Lu, Monthly rainfall forecasting using echo state networks coupled with data preprocessing methods, Water Resour. Manage., 32 (2017) 659–674.
  22. S. Sharma, P. Mujumdar, On the relationship of daily rainfall extremes and local mean temperature, J. Hydrol., 572 (2019) 179–191.
  23. V. Nourani, H. Baghanam, H. Gokcekus, Data-driven ensemble model to statistically downscale rainfall using a nonlinear predictor screening approach, J. Hydrol., 565 (2018) 538–551.
  24. A. Danladi, M. Stephen, B. Aliyu, G. Gaya, N. Silikwa, Y. Machael, Assessing the influence of weather parameters on rainfall to forecast river discharge based on short-term, Alex. Eng. J., 57 (2018) 1157–1162.
  25. H. Gökçekuş, TRNC’s Water Law and Policies, 2014. Retrieved August 4, 2019, Available at: http://www.oicvet.org/Presentations/Water_Management_Symposium/Turkey/TRNC.
  26. B. Alsalibi, Long-term Ground Water Data Breakdown and Future Predictions: Yeşilköy (Agios Andronikos) Case Study (Master Dissertation), Near East University, 2010. Retrieved August 4, 2019, Available at: doi:http://library.neu.edu.tr/Neutez/4956125072.pdf.
  27. S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renewable Sustainable Energy Rev., 5 (2001) 373–401.
  28. M. Budcema, P. Luigi Sacco, Feedforward networks in financial predictions: the future that modifies the present, Expert Syst., 17 (2000) 149–170.
  29. M. Cobaner, H. Citakoglu, O. Kisi, T. Haktanir, Estimation of mean monthly air temperatures in Turkey, Comput. Electron. Agric., 109 (2014) 71–79.
  30. M. Cobaner, B. Unal, O. Kisi, Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data, J. Hydrol., 367 (2009) 52–61.
  31. Y. Fang, B. Wu, Neural network application for thermal image recognition of low-resolution objects, J. Opt. A: Pure Appl. Opt., 9 (2007)134–144.
  32. A. Parlak, Y. Islamoglu, H. Yasar, A. Egrisogut, Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine, Appl. Therm. Eng., 26 (2006) 824–828.
  33. V. Nourani, S. Mousavi, D. Dabrowska, F. Sadikoglu, Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media, J. Hydrol., 548 (2017) 569–587.
  34. T. Bellerby, M. Todd, D. Kniveton, C. Kidd, Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network, J. Appl. Meteorol., 39 (2000) 2115–2128.
  35. R.J. Kuligowski, A.P. Barros, Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks, Weather Forecasting, 13 (1998) 1194–1204.
  36. J.E. Kutzbach, Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America, J. Appl. Meteorol., 6 (1967) 791–802.
  37. I. Maqsood, M.R. Khan, G.H. Huang, R. Abdalla, Application of soft computing models to hourly weather analysis in southern Saskatchewan, Canada, Eng. Appl. Artif. Intell., 18 (2005) 115–125.
  38. P. Astos, A. Paliatsos, K. Koukouletsos, I. Larissi, K. Moustris, Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece, Atmos. Res., 144 (2014) 141–150.
  39. E. Ortiz-García, S. Salcedo-Sanz, C. Casanova-Mateo, Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data, Atmos. Res., 139 (2014) 128–136
  40. J.J. Díaz-Torres, L. Hernández-Mena, M.A. Murillo-Tovar, E. León-Becerril, A. López-López, C. Suárez-Plascencia, V. Ojeda- Castillo, Assessment of the modulation effect of rainfall on solar radiation availability at the Earth’s surface, Meteorol. Appl., 24 (2017) 180–190.
  41. S. Sendanayake, N. Miguntanna, M.T. Jayasinghe, Predicting solar radiation for tropical islands from rainfall data, J. Urban Environ. Eng., 9 (2015) 109–118.
  42. S. Kumar, T. Kaur, Development of ANN based model for solar potential assessment using various meteorological parameters, Energy Procedia, 90 (2016) 587–592.
  43. K. Reddy, M. Ranjan, Solar resource estimation using artificial neural networks and comparison with other correlation models, Energy Convers. Manage., 44 (2003) 2519–2530.
  44. G.J. Bowden, H.R. Maier, G.C. Dandy, Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38 (2002) 1–11.
  45. A.K. Yadav, H. Malik, S. Chandel, Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models, Renewable Sustainable Energy Rev., 31 (2014) 509–519.