References
- O. Mehmet, H. Bicak, Modern and Traditional Irrigation
Technologies in the Eastern Mediterranean, IDRC International
Development Research Centre, Ottawa, 2002.
- J.J. Hobbs, Fundamentals of World Regional Geography,
Cengage Learning, 2016.
- O. Phillips-Agboola, F. Egelioglu, Water scarcity in North
Cyprus and solar desalination research: a review, Desal. Wat.
Treat., 43 (2012) 29–42.
- M. Song, R. Wang, X. Zeng, Water resources utilization
efficiency and influence factors under environmental restrictions,
J. Cleaner Prod., 184 (2018) 611–621
- S. Kundu, D. Khare, A. Mondal, Future changes in rainfall,
temperature and reference evapotranspiration in the central
India by least square support vector machine, Geosci. Front.,
8 (2017) 583–596.
- N. Seino, T. Aoyagi, H. Tsuguti, Numerical simulation of urban
impact on precipitation in Tokyo: How does urban temperature
rise affect precipitation?, Urban Clim., 23 (2018) 8–35.
- Y. Kang, S. Khan, X. Ma, Climate change impacts on crop yield,
crop water productivity and food security – a review, Progr.
Nat. Sci., 19 (2009) 1665–1674
- T. Iizumi, N. Ramankutty, How do weather and climate
influence cropping area and intensity?, Global Food Secur.,
4 (2015) 46–50.
- C.P. McMullen, J.R. Jabbour, Climate Change Science Compendium,
United Nations Environment Programme, Nairobi,
2009.
- Mislan, Haviluddin, S. Hardwinarto, Sumaryono, M. Aipassa,
Rainfall monthly prediction based on artificial neural network: a
case study in Tenggarong Station, East Kalimantan – Indonesia,
Procedia Comput. Sci., 59 (2015) 142–151.
- T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee,
A. Bahadori, A neural network-based local rainfall prediction
system using meteorological data on the Internet: a case study
using data from the Japan Meteorological Agency, Appl. Soft
Comput., 56 (2017) 317–330.
- Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the
Kerala state of India using artificial intelligence approaches,
Comp. Electr. Eng., 70 (2018) 66–73.
- R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petković,
M. Gocic, S.C. Lee, Selection of meteorological parameters
affecting rainfall estimation using neuro-fuzzy computing methodology,
Atmos. Res., 171 (2016) 21–30.
- A.M. Bagirov, A. Mahmood, A comparative assessment of
models to predict monthly rainfall in Australia, Water Resour.
Manage., 32 (2018) 1777–1794.
- N.Z. Mohd-Safar, D. Ndzi, D. Sanders, H.M. Noor, L.M. Kamarudin,
Integration of fuzzy C-means and artificial neural
network for short-term localized rainfall forecast in tropical
climate, Proceedings of SAI Intelligent Systems Conference
(IntelliSys) 2016.
- R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh,
A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci.,
11 (2018), doi: 10.1007/s12517-018-3804-z.
- R.V. Ramana, B. Krishna, S.R. Kumar, N.G. Pandey, Monthly
rainfall prediction using wavelet neural network analysis,
Water Resour. Manage., 27 (2013) 3697–3711.
- S.R. Devi, P. Arulmozhivarman, C. Venkatesh, P. Agarwal,
Performance comparison of artificial neural network models
for daily rainfall prediction, Int. J. Autom. Comput., 13 (2016)
417–427.
- A.D. Dubey, Comparative Analysis of ANFIS and SVR Model
Performance for Rainfall Prediction, Advances in Intelligent
Systems and Computing Proceedings of the Fifth International
Conference on Fuzzy and Neuro Computing (FANCCO), 2015,
pp. 63–75.
- M. Majumder, R.N. Barman, Application of Artificial Neural
Networks in Short-Term Rainfall Forecasting, Application of
Nature Based Algorithm in Natural Resource Management,
2012, pp. 43–58.
- Q. Ouyang, W. Lu, Monthly rainfall forecasting using echo state
networks coupled with data preprocessing methods, Water
Resour. Manage., 32 (2017) 659–674.
- S. Sharma, P. Mujumdar, On the relationship of daily rainfall
extremes and local mean temperature, J. Hydrol., 572 (2019)
179–191.
- V. Nourani, H. Baghanam, H. Gokcekus, Data-driven ensemble
model to statistically downscale rainfall using a nonlinear
predictor screening approach, J. Hydrol., 565 (2018) 538–551.
- A. Danladi, M. Stephen, B. Aliyu, G. Gaya, N. Silikwa,
Y. Machael, Assessing the influence of weather parameters on
rainfall to forecast river discharge based on short-term, Alex.
Eng. J., 57 (2018) 1157–1162.
- H. Gökçekuş, TRNC’s Water Law and Policies, 2014.
Retrieved August 4, 2019, Available at: http://www.oicvet.org/Presentations/Water_Management_Symposium/Turkey/TRNC.
- B. Alsalibi, Long-term Ground Water Data Breakdown and
Future Predictions: Yeşilköy (Agios Andronikos) Case Study
(Master Dissertation), Near East University, 2010. Retrieved
August 4, 2019, Available at: doi:http://library.neu.edu.tr/Neutez/4956125072.pdf.
- S.A. Kalogirou, Artificial neural networks in renewable energy
systems applications: a review, Renewable Sustainable Energy
Rev., 5 (2001) 373–401.
- M. Budcema, P. Luigi Sacco, Feedforward networks in financial
predictions: the future that modifies the present, Expert Syst.,
17 (2000) 149–170.
- M. Cobaner, H. Citakoglu, O. Kisi, T. Haktanir, Estimation of
mean monthly air temperatures in Turkey, Comput. Electron.
Agric., 109 (2014) 71–79.
- M. Cobaner, B. Unal, O. Kisi, Suspended sediment concentration
estimation by an adaptive neuro-fuzzy and neural network
approaches using hydro-meteorological data, J. Hydrol.,
367 (2009) 52–61.
- Y. Fang, B. Wu, Neural network application for thermal image
recognition of low-resolution objects, J. Opt. A: Pure Appl. Opt.,
9 (2007)134–144.
- A. Parlak, Y. Islamoglu, H. Yasar, A. Egrisogut, Application of
artificial neural network to predict specific fuel consumption
and exhaust temperature for a diesel engine, Appl. Therm.
Eng., 26 (2006) 824–828.
- V. Nourani, S. Mousavi, D. Dabrowska, F. Sadikoglu, Conjunction
of radial basis function interpolator and artificial
intelligence models for time-space modeling of contaminant
transport in porous media, J. Hydrol., 548 (2017) 569–587.
- T. Bellerby, M. Todd, D. Kniveton, C. Kidd, Rainfall estimation
from a combination of TRMM precipitation radar and GOES
multispectral satellite imagery through the use of an artificial
neural network, J. Appl. Meteorol., 39 (2000) 2115–2128.
- R.J. Kuligowski, A.P. Barros, Localized precipitation forecasts
from a numerical weather prediction model using artificial
neural networks, Weather Forecasting, 13 (1998) 1194–1204.
- J.E. Kutzbach, Empirical eigenvectors of sea-level pressure,
surface temperature and precipitation complexes over North
America, J. Appl. Meteorol., 6 (1967) 791–802.
- I. Maqsood, M.R. Khan, G.H. Huang, R. Abdalla, Application of
soft computing models to hourly weather analysis in southern
Saskatchewan, Canada, Eng. Appl. Artif. Intell., 18 (2005)
115–125.
- P. Astos, A. Paliatsos, K. Koukouletsos, I. Larissi, K. Moustris,
Artificial neural networks modeling for forecasting the
maximum daily total precipitation at Athens, Greece, Atmos.
Res., 144 (2014) 141–150.
- E. Ortiz-García, S. Salcedo-Sanz, C. Casanova-Mateo, Accurate
precipitation prediction with support vector classifiers: a study
including novel predictive variables and observational data,
Atmos. Res., 139 (2014) 128–136
- J.J. Díaz-Torres, L. Hernández-Mena, M.A. Murillo-Tovar,
E. León-Becerril, A. López-López, C. Suárez-Plascencia, V. Ojeda-
Castillo, Assessment of the modulation effect of rainfall on solar
radiation availability at the Earth’s surface, Meteorol. Appl.,
24 (2017) 180–190.
- S. Sendanayake, N. Miguntanna, M.T. Jayasinghe, Predicting
solar radiation for tropical islands from rainfall data, J. Urban
Environ. Eng., 9 (2015) 109–118.
- S. Kumar, T. Kaur, Development of ANN based model for solar
potential assessment using various meteorological parameters,
Energy Procedia, 90 (2016) 587–592.
- K. Reddy, M. Ranjan, Solar resource estimation using artificial
neural networks and comparison with other correlation models,
Energy Convers. Manage., 44 (2003) 2519–2530.
- G.J. Bowden, H.R. Maier, G.C. Dandy, Optimal division of data
for neural network models in water resources applications,
Water Resour. Res., 38 (2002) 1–11.
- A.K. Yadav, H. Malik, S. Chandel, Selection of most relevant
input parameters using WEKA for artificial neural network
based solar radiation prediction models, Renewable Sustainable
Energy Rev., 31 (2014) 509–519.