References

  1. IPCC, Technical Paper on Climate Change and Water, IPCC Secretariat, Geneva, Switzerland, 2008.
  2. R. Schaldach, J. Koch, T. Aus der Beek, E. Kynast, M. Flörke, Current and future irrigation water requirements in pan- Europe: an integrated analysis of socio-economic and climate scenarios, Global Planet. Change, 94–95 (2012) 33–45.
  3. C. Gamvroudis, Z. Dokou, N.P. Nikolaidis, G.P. Karatzas, Impacts of surface and groundwater variability response to future climate change scenarios in a large Mediterranean watershed, Environ. Earth Sci., 76 (2017) 385.
  4. W. Cramer, J. Guiot, M. Fader, J. Garrabou, J.-P. Gattuso, A. Iglesias, M.A. Lange, P. Lionello, M.C. Llasat, S. Paz, J. Peñuelas, M. Snoussi, A. Toreti, M.N. Tsimplis, E. Xoplaki, Climate change and interconnected risks to sustainable development in the Mediterranean, Nat. Clim. Change, 8 (2018) 972–980.
  5. A.H. Payab, U. Türker, Comparison of standardized meteorological indices for drought monitoring at northern part of Cyprus, Environ. Earth Sci., 78 (2019) 309.
  6. P. Lionello, S. Luca, The relation between climate change in the Mediterranean region and global warming, Reg. Environ. Change, 18, (2018) 1481–1493.
  7. R.A. Aslam, S. Shrestha, V.P. Pandey, Groundwater vulnerability to climate change: a review of the assessment methodology, Sci. Total Environ., 612 (2018) 853–875.
  8. T. Garamhegyi, J. Kovács, R. Pongrácz, P. Tanos, I.G. Hatvani, Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region, Hydrogeol. J., 26 (2018) 677–688.
  9. B. Kløve, P. Ala-Aho, G. Bertrand, J.J. Gurdak, H. Kupfersberger, J. Kværner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C.B. Uvo, E. Velasco, M. Pulido-Velazquez, Climate change impacts on groundwater and dependent ecosystems, J. Hydrol., 518 (2014) 250–266.
  10. T. Cui, M. Raiber, D. Pagendam, M. Gilfedder, D. Rassam, Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia, Hydrogeol. J., 26 (2018) 593–614.
  11. H. Treidel, J.L. Martin-Bordes, J.J. Gurdak, Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations, International Association of Hydrogeologists (IAH) – International Contributions to Hydrogeology, Taylor & Francis, London, UK, 2011, 414 p.
  12. H. Gökcekuş, A. Iravanian, U. Türker, G. Oğuz, S. Sözen, D. Orhon, Massive fresh water transport: a new dimension for integrated water-wastewater management in North Cyprus, Desal. Wat. Treat., 132 (2018) 215–225.
  13. A.H. Payab, U. Türker, Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus, Environ. Dev. Sustainability, 20 (2018) 1553–1574.
  14. U. Türker, B.S. Alsalabi, T. Rızza, Water table fluctuation analyses and associated empirical approach to predict spatial distribution of water table at Yeşilköy/AgiosAndronikos aquifer, Environ. Earth Sci., 69 (2013) 63–75.
  15. A.A.A. Jamal, U. Türker, Assessment of the regional water balance of the limestone subaquifers of Cyprus, J. Earth Syst. Sci., 124 (2015) 541–551.
  16. H. Gökçekuş, Hydrogeological and Hydrogeochemical Evaluation of the Güzelyurt Groundwater Basin, Unpublished Ph.D. Thesis, METU, Turkey, 1990.
  17. A.K. Mishra, V.P. Singh, A review of drought concepts, J. Hydrol., 391 (2010) 202–216.
  18. J. Lorenzo-Lacruz, C. Garcia, E. Morán-Tejeda, Groundwater level responses to precipitation variability in Mediterranean insular aquifers, J. Hydrol., 552 (2017) 516–531.
  19. L. Tian, S.S. Yuan, M.Q. Steven, Evaluation of six indices for monitoring agricultural drought in the south-central United States, Agric. For. Meteorol., 249 (2018) 107–119.
  20. T.B. McKee, N.J. Doesken, J. Kleist, The Relationship of Drought Frequency and Duration to Time Scales, Proceedings of the 8th Conference on Applied Climatology, 17–22 January, Anaheim, California, USA, 1993, pp. 179–184.
  21. G. Tsakiris, H. Vangelis, Establishing a drought index incorporating evapotranspiration, Eur. Water, 9 (2005) 3–11.
  22. FAO (Food and Agriculture Organization), CROPWAT Software, Food and Agriculture Organization, Land and Water Division, Rome, Italy, 2009.
  23. S. Chowdhury, M. Al-Zahrani, A. Abbas, Implications of climate change on crop water requirements in arid region: an example of Al-Jouf, Saudi Arabia, J. King Saud Univ. Eng. Sci., 28 (2016) 21–31.
  24. P. Paredes, D. D’Agostino, M. Assif, M. Todorovic, L.S. Pereira, Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach, Agric. Water Manage, 195 (2018) 11–24.
  25. FAO (Food and Agriculture Organization), CLIMWAT - A Climatic Database for Irrigation Planning and Management, FAO, Rome, Italy, 2012.
  26. FAO (Food and Agriculture Organization), Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements - FAO Irrigation and Drainage Paper No. 56, Food and Agricultural Organization of the United Nations, Rome, 1998.
  27. FAO/IIASA/ISRIC/ISSCAS/JRC, Harmonized World Soil Database (Version 1.1), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2009.
  28. S.N. Bhanja, M. Rodell, B.L. Li, D.P. Saha, A. Mukherjee, Spatiotemporal variability of groundwater storage in India, J. Hydrol., 544 (2017) 428–437.
  29. X.L. Hu, L.S. Shi, J.C. Zeng, J.Z. Yang, Y.Y. Zha, Y.J. Yao, G.L. Cao, Estimation of actual irrigation amount and its impact on groundwater depletion: a case study in the Hebei Plain, China, J. Hydrol., 543 (2016) 433–449.
  30. P. Döll, Impact of climate change and variability on irrigation requirements: a global perspective, Clim. Change, 54 (2002) 269–293.
  31. P. Döll, S. Siebert, Global modeling of irrigation water requirements, Water Resour. Res., 38 (2002) 1037.